I. INTRODUCTION

What we do know about the facts surrounding global warming, or — more accurately — climate change, is as significant as what we do not know. The scientific evidence about climate change is mottled, and the actions taken to address the phenomenon are as notable as those not taken. Moreover, even the apparently scientific issues have become subsumed within the political milieu of
sustainable development (SD). Consequently, the next dimension in the evolving saga of climate change must confront the question of how to respond to climate change while engaged in SD. The challenge of devising policies, laws, and institutions that begin to address this question is a daunting one. The instant essay attempts to explore this next dimension.

The Kyoto Protocol to the United Nations Framework Convention on Climate Change (Kyoto Protocol), signed in 1997, though not yet in force, constitutes the most important attempt of the international community to give concrete expression to the umbrella undertakings embodied in the 1992 United Nations Framework Convention on Climate Change (UNFCCC). Although the Kyoto Protocol begins in Article 2 by paying ritual respect to SD, the rest of the Protocol effectively ignores its meaning or application to climate change. This essay argues that the Kyoto Protocol is a deeply flawed agreement that negates SD for a number of reasons. First, it excludes developing countries that will be emitting more carbon dioxide than

2. Article 24 of the Kyoto Protocol provides that the Protocol will enter into force the ninetieth day after at least 55 Parties aggregating at least 55% of the total carbon dioxide emissions for 1990 of the Parties in Annex I, have deposited their instrument of ratification. See id. art. 24, reprinted in 37 I.L.M. at 41.

4. Article 2(1) provides in part: “Each Party included in Annex I in achieving its quantified emission limitation and reduction commitments under Article 3, in order to promote sustainable development, shall”, Kyoto Protocol, supra note 1, art. 2(1), reprinted in 37 I.L.M. at 32. The phrase “sustainable development” is also used in Articles 10 and 12(2). Article 10 provides in part:

All Parties, taking into account their common but differentiated responsibilities and their specific national and regional development priorities, objectives and circumstances, without introducing any new commitments for Parties not included in Annex I, but reaffirming existing commitments in Article 4, paragraph 1, of the Convention, and continuing to advance the implementation of these commitments in order to achieve sustainable development, taking into account Article 4, paragraphs 3, 5 and 7, of the Convention, shall

Id. art. 10, reprinted in 37 I.L.M. at 36-37. Article 12(2) reads:

The purpose of the clean development mechanism shall be to assist Parties not included in Annex I in achieving sustainable development and in contributing to the ultimate objective of the Convention, and to assist Parties included in Annex I in achieving compliance with their quantified emission limitation and reduction commitments under Article 3.

Id. art. 12(2), reprinted in 37 I.L.M. at 38.
the developed countries after the next thirty years. The total exemption of developing countries from even voluntary reductions of carbon dioxide invalidates the environmental dimension of SD. A removal of any form of environmental self-restraint is tantamount to an unfettered freedom or liberty to cause global pollution and damage and effectively disembowels SD.

In this context, I further argue that the United States committed a major diplomatic and policy blunder by signing both the misconceived Berlin Mandate at the First Conference of the Parties (COP-1) in 1995 and the 1996 Geneva Declaration at COP-2, instructing negotiators to seek short-term, legally-binding emission control targets and timetables confined to participating (developed) countries at COP-3, which was scheduled to be held in Kyoto in 1997. The U.S. Senate responded to both resolutions of the COP by unequivocally declaring that the United States should not be a party to any mandatory reductions of greenhouse gases (GHGs) unless the developing countries were also parties to such an agreement. This

7. The Conference of the Parties is an institution developed by the UNFCCC as a policymaking body authorized to review periodically the implementation of the UNFCCC. See UNFCCC, supra note 3 art. 7, reprinted in 31 I.L.M. at 860-62.

Resolved, That . . .

(1) the United States should not be a signatory to any protocol to, or other agreement regarding, the United Nations Framework Convention on Climate Change of 1992, at negotiations in Kyoto in December 1997, or thereafter, which would —

(A) mandate new commitments to limit or reduce greenhouse gas emissions for the Annex I Parties, unless the protocol or other agreement also mandates new specific scheduled commitments to limit or reduce greenhouse gas emissions for Developing Country Parties within the same compliance period, or

(B) would result in serious harm to the economy of the United States; and

(2) any such protocol or other agreement which would require the advice and consent of the Senate to ratification should be accompanied by a detailed explanation of any legislation or regulatory actions that may be required to implement the protocol or other agreement and should also be accompanied by an analysis of the detailed financial costs and other impacts on the economy of the
rebuff left the Clinton Administration scrambling to preserve its international image, while domestically committing to the idea that costly carbon dioxide reductions were necessary in order to save the world. The selling of this domestic objective necessitated international success, and reaching some kind of accord became the dominant focus of the negotiations.10 The result was the unfortunate Kyoto Protocol.

The second major flaw in the Kyoto Protocol is that it repudiates SD by virtually ignoring the importance of research and development (R&D) in finding alternatives to fossil fuels. There is hardly any mention in the Kyoto Protocol of the need for serious long-term R&D into alternative fuels without which attempts to cut down fossil fuel use would be almost futile.11 Costly cuts in carbon dioxide emissions can only succeed if they also strike a balance between economic development and environmental protection. It is not possible to strike this balance, required by SD, without developing other sources of readily accessible and cheap energy such as nuclear, solar, hydroelectric, geothermal, and hydrogen energy.12 The Kyoto Protocol failed to address this question.

Third, the Kyoto Protocol indulges in short-term gain at the cost of long-term benefits. The Kyoto Protocol may have allowed political leaders to spin an international success story, but did little to address the more important, long-term climate issues at stake. Consequently, the next decade may be spent quibbling over these demanding short-term commitments while ignoring more important century-scale solutions.13

11 The only mention of the role of research and development is in Article 2(1)(a)(iv) of the Kyoto Protocol, wherein the developed countries of Annex I are urged to “[i]mplement and/or further elaborate policies and measures” for the “[p]romotion, research, development and increased use of new and renewable forms of energy.” See Kyoto Protocol, supra note 1, arts. 2(1)(a), 2(1)(a)(iv), reprinted in 37 I.L.M. at 32.

13 Proof of the lack of agreement on implementation of the Kyoto Protocol is readily seen in subsequent efforts of the COP after Kyoto in COP-4 and COP-5, held in Buenos Aires and Bonn, respectively. The Fourth COP met from Nov. 2-13, 1998 in Buenos Aires with the objective of ironing out details of the Kyoto Protocol, but ended up setting a further two year schedule for future negotiations in the so-called “Buenos Aires Plan of Action.” See Anita Margrethe Halvorsen, Climate Change Treaties—New Developments at the Buenos Aires Conference, 1998 Y.B. COLO. J. INT’L ENVTL. L. &
The Kyoto Protocol is also fraught with significant other perils. It is very likely that countries might fail to meet even their immediate goals, and that the Kyoto Protocol will not be ratified in the United States. The failure to meet deadlines coupled with inaction by the United States might have the effect of discrediting the entire international response to climate change, and will obstruct collective action in the future — no matter how serious the problem turns out to be. The result is a treaty that does not make environmental, economic, or political sense. In this essay, I argue that we should ignore the Kyoto Protocol and concentrate instead on negotiating a long-range protocol on GHG emissions.
II. FACTS AND COMPETING EXPLANATIONS

A. Agreed Facts

GHGs\(^{16}\) enable the earth to trap infrared radiation which warms surface temperature while at the same time permitting excess heat to escape.\(^{17}\) The earth must radiate energy away in an amount equal to that absorbed from the sun, if surface temperature is to remain in balance.\(^{18}\) GHGs, at their natural level, maintain such a heat balance.\(^{19}\) In the right quantities, GHGs help support life and ecosystems on earth by maintaining a relatively constant surface temperature that averages nearly 60°F or about 15°C.\(^{20}\) The functioning of the greenhouse effect on earth may be supported by comparing the atmosphere and average temperature of Venus and

17. This is commonly known as the "greenhouse effect." The theory posits that certain gases and particles in an atmosphere preferentially allow the penetration of sunlight to the surface of a planet relative to the amount of radiant infrared energy that is allowed to escape back to space. See Stephen H. Schneider, The Greenhouse Effect: Science and Policy, 243 SCI. 771, 771 (1989).

18. The equilibrium in the earth’s natural radiative budget, measured by watts per square meter (wm-2), is theorized by analyzing the following description of earth’s radiation balance: Solar radiation into the earth’s atmosphere is about 340 wm-2. Some 100 wm-2 is reflected back to space by snow, ice, clouds and aerosols. The 240 wm-2 which is left warms the earth’s atmosphere and surface to about -18°C. On the other end, the earth’s surface emits infrared radiation of about 420 wm-2 into the atmosphere. The greenhouse effect redirects 180 wm-2 back to the earth, increasing the atmosphere and surface warming by about 33°C to approximately 15°C. What is left of the emitted infrared radiation escapes and balances the net incoming solar radiation. See Cline, supra note 16, at 15-16.

19. Because of the earth’s radiative budget, an increase in atmospheric concentrations of GHGs from anthropogenic emissions would mean that the greenhouse effect would redirect more of the earth’s emitted infrared radiation back to the surface, increasing global temperature. In order to balance the budget, then, the earth would emit more infrared emissions. See id. at 16. However, it should be noted that modifications in the climate do not respond instantly to the change in atmospheric concentrations of GHGs. There is a “lag” period before equilibrium is achieved. Hence, the increase in global average temperature corresponding to increased GHG concentrations may not be cognizable for several decades. See PANEL ON POLICY IMPLICATIONS OF GREENHOUSE WARMING, NATIONAL ACADEMY OF SCIENCES, POLICY IMPLICATIONS OF GREENHOUSE WARMING: MITIGATION, ADAPTATION, AND THE SCIENCE BASE 19 (1992) [hereinafter POLICY IMPLICATIONS OF GREENHOUSE WARMING].

Mars. The dense carbon dioxide concentration in the atmosphere of Venus contributes to a very hot surface temperature (477°C), while the low concentration of carbon dioxide in the atmosphere on Mars contributes to a much colder surface temperature (-47°C).²¹

Water vapor and clouds, which usually remain in the atmosphere for a week or so, are responsible for radiating upward-flowing infrared light back to the surface of the earth.²² Long-lasting GHGs, most notably carbon dioxide, however, are the central actors in the climate change debate.²³ Atmospheric concentrations of carbon dioxide and other long-lived GHGs have increased substantially over the past century.²⁴ The increase in atmospheric concentrations of GHGs has corresponded to a decrease in the flow of infrared energy to space, "so that, all else being equal, the earth receives slightly more energy than it radiates to space."²⁵ This imbalance contributes to a rise in temperature at the earth’s surface.²⁶

Enormous quantities of trace GHGs are emitted into the atmosphere today through anthropogenic emissions. For example, each year the burning of fossil fuels discharges six billion tons of carbon dioxide into the atmosphere.²⁷ Many scientists fear such anthropogenic emissions may be upsetting the environmental balance hitherto maintained by atmospheric gases that blanket the

²² One viewpoint is that approximately 75% of the natural greenhouse effect is due to water vapor in the atmosphere. See William C. Burns, Global Warming—The United Nations Framework Convention on Climate Change and the Future of Small Island States, 6 DICK. J. ENVTL. L. & POL’Y 147 n.17 (1997) (citing AUSTRALIAN STEERING COMMITTEE OF THE CLIMATE CHANGE STUDY, CLIMATE CHANGE SCIENCE 13 (1995)).
²³ See Jacoby et al., supra note 12, at 56. Measurements show that about 40% of carbon dioxide released into the atmosphere stays there for decades at least, while 15% is incorporated into the top layers of the ocean. It is unknown what happens to the remaining 45%. See POLICY IMPLICATIONS OF GREENHOUSE WARMING, supra note 19, at 12. In addition to carbon dioxide, other long lived GHGs are nitrous oxide, methane, hydrofluorocarbons, perfluorocarbons, and sulfur hexafluoride. See WORKING GROUP I, INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, CLIMATE CHANGE 1995: THE SCIENCE OF CLIMATE CHANGE 3 (J.T. Houghton et al., eds., 1996) [hereinafter IPCC CLIMATE CHANGE 1995].
²⁴ The Intergovernmental Panel on Climate Change (IPCC) concluded in 1990 that emissions of GHGs from human activities were contributing to substantial increases in atmospheric concentrations of carbon dioxide, methane, nitrous oxide, and chlorofluorocarbons. See INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, CLIMATE CHANGE: THE IPCC SCIENTIFIC ASSESSMENT xi (J.T. Houghton et al., eds., 1990).
²⁵ Jacoby et al., supra note 12, at 56-57.
They believe that if GHGs are allowed to build, this energy balance will be upset, and trapped infrared radiation will cause a rise in surface temperature.\(^{29}\)

Debate is seriously joined with respect to both the extent and impact of global warming and how complex systems that determine our climate will respond to changes in the concentrations of GHGs in the atmosphere.\(^{30}\) Moreover, global warming is integrally connected to the warming of the oceans, but it is not known just how rapidly heat is carried into the ocean depths or whether oceanic organisms can serve as carbon dioxide sinks.\(^{31}\) It is also not known to what extent forests and vegetation on the terrestrial environment can act as sinks.\(^{32}\)

In predicting climate, scientists use mathematical models with complexities taxing the capabilities of even the world’s largest computers. To date, such models have not been able to include complete “knowledge about the key factors that influence climate, including clouds, ocean circulation, the natural cycles of greenhouse gases, natural aerosols like those produced by volcanic gases, and man-made aerosols like smog.”\(^{33}\)

According to the Intergovernmental Panel on Climate Change (IPCC), in summary, the main uncertainties in model simulations arise from the difficulties in adequately representing clouds and their radiative properties along with those of the atmosphere, the ocean, and the land surface.\(^{34}\) Moreover, atmospheric general circulation models still exhibit inconsistencies when their results are matched with climatic data of

\(^{28}\) Although anthropogenic emissions of carbon dioxide are small relative to the total stock of carbon contained in the atmosphere, it is feared that even a small variation in natural flows and stocks may upset the natural energy balance. See Cline, \textit{supra} note 16, at 16-17. See also John Firor, \textit{The Changing Atmosphere: A Global Challenge} 51 (1990).

\(^{29}\) See Joseph Constantin Dragan & Stefan Airinei, \textit{GeoClimate and History} 142 (2d ed. 1989).

\(^{30}\) For an illuminating overview of the range of arguments in the climate change debate, see Balling, Jr., \textit{supra} note 20.

\(^{32}\) The common view is that forests take up about as much carbon dioxide while photosynthesizing as they give off when respiring. A newer picture of forest dynamics suggest that more carbon is stored in soils and peat than previously thought. Coupled with the expansion of forests in certain parts of the world, improved use of forests worldwide could help mitigate increased anthropogenic emissions of carbon dioxide. See Anne Simon Moffat, \textit{Resurgent Forests Can Be Greenhouse Gas Sponges}, 277 Sci. 315, 315 (1997).

\(^{33}\) See Jacoby et al., \textit{supra} note 12, at 57.

\(^{34}\) See IPCC \textit{Climate Change 1995}, \textit{supra} note 23, at 31; See also Burns, \textit{supra} note 22, at 156 n.47.
past centuries.35 “In addition, climate models are driven by forecasts of greenhouse gas emissions, which in turn rest on highly uncertain long-term predictions of population trends, economic growth, and technological advances.”36

Despite the fact that the awesome complexity of atmospheric mechanisms cannot fully be replicated by mathematical models,37 a majority of the scientific community agree that the greenhouse effect will be enhanced by the increased atmospheric concentrations of GHGs.38 Indeed, there is a strong general consensus among the international scientific community that some action should be taken now to limit or reduce atmospheric GHGs on a global basis, because corrective actions will be ineffective after climate change has gained momentum.39

Further, a scientific consensus holds that atmospheric carbon dioxide levels will increase between 100 and 200% by the year 2100 if no changes are made to current policy and practice.40 This could correspond to a mean global temperature increase of between 0.9 and 3.5°C, with a best estimate placing the increase near 2.5°C.41 Over the past century, data reveals approximately a 0.5°C increase in average global temperature.42 This rise has not yet made a discernible difference to the earth’s environment. Larger temperature increases such as those now predicted to occur over the next century, however, may cause a different result.

B. The Yea-Sayers

35. In studies of climate change of the past 18,000 years, general circulation model results have not been able to match the paleoclimatic data. See P.M. Anderson et al., Climatic Changes of the Last 18,000 Years: Observations and Model Simulations, 241 SCI. 1043, 1051 (1988).

36. See Jacoby et al., supra note 12, at 57.

37. See IPCC CLIMATE CHANGE 1995, supra note 23; See also DRAGÁN & AIRINEI, supra note 29, at 27.

40. “If carbon dioxide emissions were maintained at near current (1994) levels, they would lead to a nearly constant rate of increase in atmospheric concentrations for at least two centuries, reaching about 500 ppmv (approaching twice the pre-industrial concentration of 280 ppmv) by the end of the 21st century.” IPCC CLIMATE CHANGE 1995, supra note 23, at 3.

41. See id. at 39.

42. See J.D. Mahlman, Uncertainties in Projections of Human-Caused Climate Warming, 278 SCI. 1416, 1416 (1997). IPCC CLIMATE CHANGE 1995, supra note 23, at 61 (estimating the mean global warming over the past century to be between 0.3 and 0.6°C).
In 1988, the IPCC, currently composed of more than 2000 climate change scientists, was formed jointly by the World Meteorological Organization (WMO) and the United Nations Environment Programme (UNEP) to evaluate the scientific phenomenon of global warming and its effects on earth’s community. These scientists and climate change experts participate in three working groups and a Task Force. The first assessment report of the working groups was published in 1990. Updates followed in 1992 and 1994, along with the second assessment report in 1995.

The IPCC concluded in its original report that global climate change might have its greatest impact in the polar regions, melting polar ice caps and causing a rise in sea-level of about one meter by the year 2100 and a rise in temperature of the surface ocean layer of between 0.2 and 2.5°C. They predicted that climate changes will affect agriculture, forestry, natural terrestrial ecosystems, hydrology, water resources, human settlements, oceans and coastal zones, seasonal snow cover, permafrost, and ice. Specific predictions were difficult on a regional scale since climate varies regionally. The IPCC supplements confirmed the original findings and provided additional supporting data and a refinement of specific predictions. According to the IPCC second assessment report in 1995, the most pronounced impacts will be related to water resources.

45. See IPCC, About IPCC (visited May 22, 2000) <http://www.ipcc.ch/about/about.htm>, Working Group I focuses on the scientific aspects of climate change. See id. Working Group II concentrates on the socio-economic impact and positive and negative consequences of climate change. See id. Working Group III addresses the options for limiting GHG emissions and mitigating climate change. See id. The Task Force supervises the National Greenhouse Gas Inventories Programme. See id.

47. See INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, CLIMATE CHANGE: THE IPCC IMPACTS ASSESSMENT I (W.J. McG. Tegart et al., eds., 1990).

48. See id.

50. See WORKING GROUP II, INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, SUMMARY FOR POLICYMAKERS: SCIENTIFIC-TECHNICAL ANALYSES OF IMPACTS, ADAPTATIONS AND MITIGATION OF CLIMATE
global temperatures will change existing patterns of precipitation, which in turn will cause meteorological shifts affecting seasonal snow patterns. Additionally, melting polar ice caps are expected to cause a rise in sea level which will directly impact commercial marine industries like shipping and fishing. Sea level rises will also severely challenge coastal land use. Agriculture will follow precipitation and temperature, and entire species will either adapt to the new habitats, shift locations, or face localized and potentially widespread extinction.

Human settlements will also change as world population and trading centers are typically located on coasts. Developing countries and areas with significant lowlands may be unable to survive the health impacts of changing water and food supplies. Finally, human migration may disrupt settlement patterns and cause social instability. In light of the fact, however, that global warming may lead to winners as well as losers, diplomatic progress has been inhibited by geographical differences in the impact of global warming effects and the remote manifestation of actual changes to the ecosystem.

C. The Nay-Sayers

The predictions of the IPCC have been challenged by a large group of scientists. Since the UNFCCC was signed in 1992, dissenting scientists have expressed themselves through four petitions culminating in the Oregon Petition signed by over 17,000 U.S. scientists. To begin, some scientists contend that despite the volume emitted by human activities, the accumulation of anthropogenic carbon dioxide is really a tiny constituent of our atmosphere,
comprising about 4/100 of 1% of all gases present. A number of factors related to climate change remain uncertain, they say, including the effects of clouds, and there are a number of non-greenhouse-related factors that may augment global temperature. They further argue that carbon dioxide has been steadily increasing for the last 11,000 years, coinciding with an interruption in the ice age and the onset of global warming.

One of the other issues on which they disagree with the IPCC is whether the global warming the earth has experienced over the last century is due to human intervention. It is admitted by the naysayers that a 0.45°C warming has taken place during this last century. What many of these scientists contend, however, is that the temperature rise took place before 1940, prior to the huge increase in carbon dioxide emissions, and that there has not been much change since 1940. They point out that National Oceanic and Atmospheric Administration (NOAA) satellites have been measuring the temperature at a height of a few kilometers in the atmosphere essentially over the entire earth since 1979. These records, based on

60. Although clouds trap some heat, they reflect heat from the sun, in net, producing a cooling effect on the planet. See Richard A. Kerr, Greenhouse Forecasting Still Cloudy, 276 S CI. 1040, 1040 (1997). The precise impact of clouds is not clear, however, and it is debatable whether global warming will contribute to a change in this balance. See id. at 1041.

61. It is claimed, for example, that the IPCC has not paid sufficient attention to the astronomical causes of global warming caused by the earth’s orbital eccentricities as well as variations in solar output. To illustrate the former, there are at least two competing orbital mechanism theories that explain the occurrence of Ice Ages in the earth’s past. The first theory posits that cyclical changes in the earth’s elliptical orbit shift the pattern of solar heating, affecting the buildup of ice sheets. This has been termed the Milankovitch mechanism. See Richard A. Kerr, Upstart Ice Age Theory Gets Attentive But Chilly Hearing, 277 SCI. 183, 183 (1997). The second, newer, theory proposes that ice ages were stimulated by changes in the inclination of the earth’s orbit relative to the plane of the solar system, causing the planet to be enveloped in clouds of cosmic dust. See id. As for the latter theory, See Richard A. Kerr, A New Dawn for Sun-Climate Links, 271 SCI. 1360, 1360 (1996) (discussing apparent sun-climate connection resulting from the sun’s eleven and twenty-two year sunspot cycles).

62. See S. Fred Singer, HOT TALK, COLD SCIENCE: GLOBAL WARMING’S UNFINISHED BUSINESS 5-6 (1997). However, some recent studies question the solidity of evidence showing a constant buildup in carbon dioxide levels from the beginning of the Holocene epoch (about 11,000 years ago) to the present. See Curt Suplee, Studies May Alter Insights into Global Warming, WASH. POST, Mar. 15, 1999, at A7.

63. See BALLING, JR., supra note 20, at 68-69.

64. See S. Fred Singer, An Assessment of the Kyoto Protocol, Transcript from Panel Discussion, April 15, 1999, 11 GEO. INT’L ENVTL. L. REV. 767, 771 (1999). Of the 0.46°C amount of warming occurring from 1891 to 1990, it is contended that the amount of warming from 1891 to 1940 was 0.33°C. See Robert C. Balling, Jr., The Global Temperature Data, 9 RES. & EXPLORATION 201, 202 (1993).

65. See George C. Marshall Institute, Uncertainties in Climate Modeling: Solar Variability and Other Factors (testimony of Sallie Baliunas, Ph.D., Senior Scientist of the George C. Marshall Institute, before the Senate Committee on Energy and Natural Resources) (Sept. 17, 1996) <http://www.marshall.org/baliunastestimony.htm> [hereinafter Uncertainties in Climate Modeling]. The NOAA also has in place a Geostationary Operational Environmental Satellite System providing
microwave sounding units (MSUs), have smaller systematic errors than the surface records, which, unlike the satellite records, come from a variety of instruments, techniques, and measurement histories, and whose coverage is sparse over large areas like the southern ocean. The very precise satellite record shows no net warming over the last seventeen years, contrary to the forecasts calculating the effect of the recent rapid increase in human-made GHGs. The results based on satellite data using MSUs are supported by researchers whose observations are based on radiosonde data (weather balloons).

An expert panel of the U.S. National Research Council (NRC) that attempted to reconcile the contradictory figures between surface and atmospheric measurements has offered only a partial explanation. In light of the panel’s inability to explain the differentials, they recommended the implementation of a worldwide monitoring system. Until more light is shed on this issue, the discrepancies still remain largely unexplained.

The nay-sayers further point out that temperatures have fluctuated over the centuries and while the last 600 years have been cold, it was warmer 1000 years ago, and even warmer 3000 years ago. According to them, it is untrue that the warming from rising GHGs is going to be unprecedented in both magnitude and rapidity. Ocean sediment data of the past 3000 years discloses temperature climatological observation of the United States. See Charles Davies et al., Moving Pictures: How Satellites, the Internet, and International Environmental Law Can Help Promote Sustainable Development, 28 STETSON L. REV. 1091, 1116 (1999). In addition, a worldwide system of satellites to provide information on global climate is currently being implemented through coordination by NOAA, NASA, and public and private operations in several countries. See id. at 1116-17.

66. The radiometers aboard the NOAA satellites are MSUs designed to measure thermal emission of radiation by atmospheric O2 at four frequencies near 60 GHz. See Roy W. Spencer & John R. Christy, Precise Monitoring of Global Temperature Trends from Satellites, 247 SCI. 1558, 1558 (1990). This can be accomplished because atmospheric O2 is constant in space and time and ensures a stable temperature tracer. See id.

67. See id.

68. See Uncertainties in Climate Modeling, supra note 65.

70. See PANEL ON RECONCILING TEMPERATURE OBSERVATIONS, NATIONAL RESEARCH COUNCIL, RECONCILING OBSERVATIONS OF GLOBAL TEMPERATURE CHANGE (2000).

71. See B.D. Santer et al., Interpreting Differential Temperature Trends at the Surface and in the Lower Troposphere, 287 SCI. 1227, 1231 (2000). Three explanations have been forwarded to explain the difference: first, there could be data problems in either the surface thermometers, or the radiosonde and satellite data; second, the effects of natural internal variability and/or external forcing may account for the difference; third, the difference could be related to coverage differences between satellite and surface temperature data. See id. at 1227.

72. See Singer, supra note 64, at 772.

73. See id.
changes of 3°C (about 5°F) taking place in a matter of a decade or two.74 Such rapid temperature changes, they state, have happened throughout recorded human history.75

Another method of measuring temperatures from the past is drilling ice cores from the ice in the Arctic and Antarctic and taking the samples to a laboratory where temperatures can be measured.76 These measurements reveal low temperatures during the last ice age followed by a warming that began about 20,000 years ago and continuing to the present time.77 Prior to that time, it was considerably colder, and a thick overlay of ice covered most of the northern United States.78 The last 8000 to 4000 years, however, witnessed a period of significant warmth called the “Climate Optimum.”79 It was followed in turn by a cooling period and another warming 1000 years ago, called the “Medieval Climate Optimum.”80 This warming enabled the Vikings to settle Greenland and cultivate crops, but was followed, from about 1250 to 1850 A.D., by a period called the “Little Ice Age,” during which crop failures caused starvation.81 A sharp recovery with warming then commenced at about 1850, reaching a maximum temperature in 1940. According to the nay-sayers, then, global warming theories cannot explain the temperature peaking in the 1940s.82

\section*{III. LEGAL RESPONSE}

\subsection*{A. 1992 United Nations Framework Convention on Climate Change}

74 See id.

75 See id.

77 See Singer, supra note 64, at 772; See also D. Dahl-Jensen, Past Temperatures Directly From the Greenland Ice Sheet, 282 SCI. 268, 270 (1998).

78 See Singer, supra note 64, at 772.

79 See id.

80 See id.

81 See id.

82 See id.
The international law response to the threat of global warming was first expressed in the 1992 UNFCCC. Though there was a substantial political base which desired long-term quantitative emission limits, eventually a “go-slow” approach prevailed. The short negotiating period, combined both with the enormous economic stakes and a substantial amount of scientific uncertainty, resulted in the adoption of only cautious controls in the final version of the treaty.

The UNFCCC, however, is not an empty framework treaty whose substantive details entirely await further elaboration; instead, it is a framework convention with a number of built-in requirements. Most significantly, developed countries must strive to reduce their overall emissions of GHGs to 1990 levels by the year 2000. In addition, developed countries have a general commitment to make financial and technological transfers to developing countries. Furthermore all parties, both developed and developing countries, must develop inventories of GHGs, as well as national mitigation and adaptation programs. The UNFCCC, however, provides different timetables and requirements for both categories of parties with regard to inventories and other programs, and the COP has established different guidelines for the national reports communicating such programs to the COP.

In mandating different requirements for developed and developing countries, as well as making further delineations within those groups, the UNFCCC embraces the concept of “common but differentiated responsibility” (CBDR). This principle recognizes that only international cooperation will help to resolve a problem of the magnitude of global warming, but that in responding to the problem, different states have different social and economic conditions that affect their response capabilities. CBDR also incor-
porates the equitable notion that developed countries, which have the largest share of historical and current emissions of GHGs, should take the first painful actions to ameliorate the problem.92 As we shall see, however, the exact application of CBDR remains in controversy concerning a number of issues.

B. 1997 Kyoto Protocol

The First COP (COP-1) assembled on March 28, 1995, in Berlin to address additional commitments, financial mechanisms, technical support to developing countries, and administrative and procedural issues involving climate change.93 A pressing issue was whether Annex I Parties would be able to achieve the general emissions reduction goal heralded by the UNFCCC.94 As a result, the Berlin Mandate was passed, under which developed countries agreed to future negotiation of a protocol containing express targets and timetables for emissions reductions.95 The Berlin Mandate created an Ad-Hoc Group on the Berlin Mandate (AGBM) to meet periodically with the function of determining how to strengthen the commitments of Annex I Parties past the year 2000.96 This was to be concluded ultimately in the form of a protocol, to be adopted at COP-3. The AGBM met eight times between COP-1 in 1995 and the Kyoto Protocol conference in December 1997.

Further stimulus for negotiation of a protocol at COP-3 occurred when, in April 1996, the IPCC published its 1995 second assessment report finding that “the balance of evidence suggests a discernible human influence on global climate.”97 Subsequently, COP-2 convened in July 1996, producing several important developments.98 First, the Parties published the Geneva Declaration, calling for “legally-binding targets and timetables to ensure significant reductions in GHG emissions,” similar to the Berlin Mandate.99 Second, the U.S. shifted its position toward a legally-binding agreement to accomplish the objectives of the Berlin Mandate and UNFCCC, a stance that the European Union had been advocating for

92 See id. at 28.
93 See Cooper, \textit{supra} note 43, at 411.
94 See UNFCCC, \textit{supra} note 3, art. 4(2)(b), reprinted in 31 I.L.M. at 857.
95 See Nanda, \textit{supra} note 84, at 326.
96 See Cooper, \textit{supra} note 43, at 411.
97 IPCC CLIMATE CHANGE 1995, \textit{supra} note 23, at 4.
98 See Cooper, \textit{supra} note 43, at 412.
99 Id.
years. The remaining issue left for the COP-3 negotiations in Kyoto was the establishment of legally-binding targets. In direct response to these developments, a unanimous Senate Resolution in July 1997, passed during the run-up to Kyoto in 1997, clearly and unequivocally declared that the United States should not be a party to any mandatory reductions of greenhouse gases unless the developing countries were also parties to such an agreement. Despite their full knowledge that any agreement required by the Berlin mandate would not be approved by the Senate, the Clinton Administration felt obligated by the Berlin undertaking, and publicly committed itself to an emission reduction agreement restricted to developed countries alone, while taking its case to the public over the heads of the Senate.

Significant steps in the global response to climate change were then taken at COP-3 in Kyoto in 1997 and at COP-4 in Buenos Aires in 1998. After intense negotiation at Kyoto, the developed countries agreed to reduce GHG emissions to five percent below their 1990 levels between the years 2008 and 2112. The Kyoto Protocol, embodying this agreement, also provided a basis for emissions trading, primarily between developed countries. The Kyoto Protocol, however, has not been ratified in the United States. Additionally, a number of the industrialized (Annex I) countries have failed to carry out the emission reductions to which they had aspirationally agreed under the UNFCCC. The faltering attempts made at COP-4 in Buenos Aires in 1998 did little to remedy this problem. Consequently, the Kyoto Protocol’s objectives of reducing GHGs, primarily carbon dioxide, to a level that is five percent below 1990 discharges by 2112, are receding into the distance and appear effectively

100. See id.
101. See id.
102. See Senate Resolution Regarding UNFCCC, supra note 9.
104. See Kyoto Protocol, supra note 1, art. 3(1), reprinted in 37 I.L.M. at 33. The United States agreed to a reduction of emissions of 7%, the Europeans to a reduction of 8%, and the Japanese to a reduction of 6%. See id. Annex B, reprinted in 37 I.L.M. at 43.
105. The Kyoto Protocol allowed for two types of implementation based upon: (1) joint implementation between Annex I (developed) countries, including the creation of mechanisms such as the creation of a “bubble” for the European Union and the clean development mechanism (between developed and developing countries), and (2) emissions trading between industrialized countries. See Nanda, supra note 84, at 328-29.
106. An estimate for the United States is that it will miss the hortatory year 2000 target of the UNFCCC by 13%. See Paul E. Hagen et al., International Environmental Law, 32 INT’L LAW, 515, 517 (1997).
unattainable. But what is even more disturbing is that even if the Kyoto Protocol were fully and faithfully implemented, GHGs will double to their pre-industrial levels by the year 2100, and quadruple within another 50 years.\footnote{107}

IV. WHY THE KYOTO PROTOCOL IS IRREPARABLY FLAWED

A. The Meaning of Sustainable Development

In 1983, the World Commission on Environment and Development (WCED or Brundtland Commission) was constituted by the General Assembly of the U.N., and charged with proposing long-term environmental strategies for SD.\footnote{108} That elusive term was not defined by the U.N., and despite the efforts of the Brundtland Commission and the Earth Summit of 1992 in Rio de Janeiro (Earth Summit),\footnote{109} still eludes satisfactory definition. After four years of deliberation, worldwide consultation and study, the Brundtland Report, titled \textit{Our Common Future}, articulated the paradigm on which the Earth Summit, and indeed international environmental law, has since been based.\footnote{110} In essence, it rejected the despairing thesis that environmental problems were past repair, spiraling out of control, and could only be averted by \textit{no growth} that arrested development and economic growth.\footnote{111} Instead, it argued that economic growth was both desirable and possible within a context of SD.\footnote{112}

SD has come to be accepted as a foundational norm of environmental law and policy by the international community. Though proclaimed the \textit{grundnorm} of international environmental law since the Earth Summit, the concept admittedly still bears a chimerical character and calls to be honed, refined and more clearly defined.\footnote{113} While this process of development has been progressing,
a recent re-statement of SD, conceptualized by a group that includes a significant number of Nobel Laureates, is worthy of particular attention. The re-statement defines SD as the wise use of resources through social, economic, technological, and ecological policies governing natural and human-engineered capital. Such policies should promote innovations that assure a higher degree of life support for human needs fulfillment, across all regions of the world, while ensuring intergenerational equity.

SD marks a departure from our thinking of the sixties and seventies by recognizing that humans are part of the environment and ought no longer to be treated as predators within the natural systems of the world. Although SD was not clearly defined by the Brundtland Report, some of its key attributes are identifiable. First, it calls for developmental policies and for economic growth that can relieve the great poverty of the least developed countries, while protecting the environment. Second, development and growth should be based on policies that sustain and expand the environmental resource base in a manner that meets the needs of the present generation without compromising the ability of future generations to meet their own needs. Consequently, SD was seen as environmentally sensitive development that meets the needs of the present generation without compromising the ability of future generations to meet their own needs. From this standpoint, SD gives parity of status to economic growth and environmental protection. It rejects economic development and growth that is not environmentally sensitive or destroys the resource base. Thus it embraces both development and environmental protection.

The iteration of SD that emerged at the Earth Summit was somewhat different. To begin, the intended “Earth Charter” was replaced by the “Rio Declaration on Environment and Development” (Rio

\[Development in the South Pacific Region, 12 GEO. INT'L ENVT'L. REV. 125, 130-31 n.19 (1999) (summarizing the current competing conceptions concerning SD’s rise to a mandate of international environmental law).

115. See id.

116. See OUR COMMON FUTURE, supra note 110, at 49.

117. See id. at 44; cf. Giraud-Kinley, supra note 113, at 130 (describing two basic elements derived from the concept of sustainable development: a temporal element calling for maintaining natural resources at a renewable level for use by future generations; and a spatial element “integrating economic and ecological factors in decision-making”).

118. See OUR COMMON FUTURE, supra note 110, at 8.

a title that diminished the environmental resonance and status of that document. Second, the principles of the Rio Declaration, when compared to those of the Stockholm Declaration, stressed development at the expense of conservation. For example, the nascent right to a wholesome environment embodied in the Stockholm Declaration was abandoned in favor of a right to development (Principle 2) in the Rio Declaration. The obligation not to cause trans-frontier damage contained in Principle 21 of the Stockholm Declaration was weakened in Principle 2 of the Rio Declaration by the addition of crucial language authorizing states “to exploit their own resources pursuant to their own environmental and developmental policies.”

The obligation to conserve implied by the duty to protect the environment for the benefit of future generations found in the Stockholm Declaration is replaced in the Rio Declaration by a right to consume or develop. The Rio formulation refers to “developmental and environmental needs of present and future generations” (Principle 3). This re-formulation impliedly negates or weakens the obligation to conserve expressed in the Stockholm Declaration. Finally, the Rio Declaration frowns upon action such as that taken by the United States under the Marine Mammal Protection Act of 1972 to prevent the killing of dolphins by prohibiting imports of tuna caught in dolphin killing nets. Principle 12 of the Rio Declaration states that “[u]nilateral actions to deal with environmental challenges outside the jurisdiction of the importing country should be avoided.”

123. See Pallemaerts, supra note 121, at 630-36 (analyzing the Principles of the Rio declaration as affirming the right of developmental imperatives over ecological requirements).

124. See Rio Declaration, supra note 120, princ. 2, reprinted in 31 I.L.M. at 876.

125. See Stockholm Declaration, supra note 122, princ. 21, reprinted in 11 I.L.M. at 1420.

126. Rio Declaration, supra note 120, princ. 2, reprinted in 31 I.L.M. at 876 (emphasis added).

127. Id. princ. 3, reprinted in 31 I.L.M. at 877.

129. Rio Declaration, supra note 120, princ. 12, reprinted in 31 I.L.M. at 878.
Not surprisingly, some commentators, including the present author, have argued that the Rio Declaration institutionalized a preeminent right to economic development that enfeebled and attenuated the ecological imperative of SD. Such a claim is confirmed by language of the Convention on Biological Diversity (CBD). SD functions as a prevailing force and the ultimate objective of the CBD.

Despite these misgivings about what SD ought to mean, the hard fact remains, however, that SD is about economic growth. Consequently, the Encyclopedia of Life Support Systems Conceptual Framework defines sustainable development as development that wisely uses human and natural resources so as to “assure a higher degree of human needs fulfillment, or life support.” The life support systems referred to are both natural and social systems that promote human welfare. Thus “life support systems” are defined as “natural environmental systems as well as ancillary social systems required to foster societal harmony, safety, nutrition, medical care, economic standards, and the development of new technology . . . that . . . operate in partnership with the conservation of global natural resources.” These definitions give primacy to the pursuit of human welfare and the betterment of human quality of life through the prudential conservation of natural resources. The emphasis is clearly on the advancement of human welfare and not the protection of the environment or the preservation of natural resources for its own sake. In sum, it would be fair to conclude that the balance in SD on the international level is weighed in favor of development, not conservation.

The manner in which SD is being defined can have profound implications for law, policy and institutions. As presently envisioned, the promotion of human needs fulfillment is not countervailed by environmental or conservationist constraints, except where environmental abuse might imperil human needs fulfillment. This per-

132. The Preamble to the Convention on Biological Diversity declares that “States are responsible for conserving their biological diversity and for using their biological resources in a sustainable manner,” and that signatories are “[d]etermined to conserve and sustainably use biological diversity for the benefit of present and future generations.” Id. pmbl., reprinted in 31 I.L.M. at 822, 823.
133. Conceptual Framework, supra note 114.
134. Id. at 1.
spective may be contrasted with the existing paradigm of U.S. environmental laws and policies as found in the National Environmental Policy Act of 1969 (NEPA), Endangered Species Act of 1973 (ESA), the Wilderness Act, the Clean Air Act (CAA) and Clean Water Act (CWA). These U.S. laws institutionalize environmental protection as a value in its own right, whether or not human needs are fulfilled or promoted. They embody a concept different to sustainable development as presently defined, based at least in part on a view of the environment and ecology that is not scientifically supported.

Despite this paradigm shift, this essay maintains that the Kyoto Protocol repudiated SD. The reason is that environmental protection still remains an integral, albeit weakened, component of SD. The prominence given to development in SD does not nullify the need to preserve or support the life support systems on which human fulfillment is based. To do otherwise would be to destroy the primary source of human welfare. Moreover, when facing a global peril of the magnitude of climate change, it is difficult to argue that a common threat to global security does not call for common action. Surely, there is no moral or ethical justification for allowing a deprived member of the family to fuel a deadly fire that is being put out by the others.

B. Exemption of Developing Countries

The Kyoto Protocol remains an irreparably flawed instrument because it exempts developing countries from even voluntary reductions of carbon dioxide. By exempting developing countries from any form of self-restraint, they have been freed and authorized to pollute by relying on as much fossil fuel energy as they may choose. The case of China illustrates how SD has been negated by the Kyoto Protocol. China emits 14% of the world’s GHGs in comparison to the 22% emitted by the United States today. China’s modest contribution to GHG emissions in the past, however, stands

140. See infra notes 242-247 and accompanying text.
141. The following discussion of China incorporates substantially the research findings of Deborah Cooper in her article examining the vast impact China is predicted to have on the emissions of GHGs. See Cooper, supra note 43, at 404-07, 416-17.
in bleak contrast to the future. China’s energy consumption is expected to rise with future economic development and rising standards of living, causing carbon dioxide emissions to increase dramatically. It is predicted that China’s annual carbon dioxide emissions could rise to 2380 metric tons of carbon by the year 2020, if the expected energy consumption is met. In addition, because it is anticipated that China will rely upon coal-fired power production for the next 100 years, its emissions from energy use could expand from “today’s 0.7 billion tons to 3.2 billion tons by the year 2025.”

In that event, China’s contributions alone would constitute 40% of global emissions and would likely undercut whatever progress is made by the emission reductions by those developed countries implementing the Kyoto Protocol.

China’s reliance upon coal-fired power production is aggravated by the use of high-sulfur coal and the inefficient power plants.

High-sulfur coal is used because of abundance and ease of mining, but vast amounts of energy go by the wayside when it is burned. This is because a typical Chinese power plant’s efficiency rate is only 6%, as compared to a typical American power plant efficiency rating of 36%. Accordingly, the Chinese have to use six times more coal to produce an equivalent amount of U.S.-produced energy.

Moreover, reliance on this type of coal has caused severe air pollution throughout China. Seventy percent of smoke or dust and ninety percent of sulfur dioxide emissions stem from the burning of coal. This severe level of air pollution causes nausea, dizziness, lung cancer, bronchitis, pneumonia, and asthma.

In fact, the Ministry of Public Health reported the poor air quality was a contributing factor in 26% of all deaths in China in 1988. This figure has been corroborated by the World Bank, according to which respiratory disease associated with air pollution is the leading cause of death in China. Air pollution of this magnitude has also caused

143. See Cooper, supra note 43, at 404.
144. See id.
145. See id.
146. See id.
149. See id. at 405-06.
150. See id. at 406.
diminishing crop yields, and a shortage on the level of 100 million tons of grain could occur by the year 2030.151

China’s carbon dioxide emissions will be exacerbated by its economic progress that leads to increases in the use of vehicles and personal energy.152 Previously, more than one in three Chinese exclusively used bicycles for transportation, but cars are increasingly becoming status symbols.153 The car industry has been embraced by China as a foundation of its growing economy. By the year 2000, China aims to produce three million cars per year for domestic use.154 If vehicle use in China ends up paralleling the United States, this would account for over 19% of the world’s GHG emissions.155 China’s philosophy also opposes limits on personal energy consumption because such limits are viewed as a barrier to prosperity.156

The picture thus is clear that China is not engaging in SD because SD encapsulates economic development with due care for the environment.157 It embraces the idea that development can prevail over simple preservationism but not that the environment ought to be sacrificed for economic growth. Rather, development can coincide with environmental consciousness, and must be sensitive to environmental protection. SD is not a form of “ecocolonialism.” China’s purported objective of avoiding “ecocolonialism,” therefore may be seen as an ill-disguised subterfuge for advancing its own economic advantage at the expense of the global environment.

This becomes clear from China’s negotiating position at Kyoto which demonstrated that its desire to pursue economic development trumps environmental goals. The position of China and other countries like India and Brazil was that economic development is a necessity, while environmental protection is a luxury that developing countries cannot afford.158 In the words of Chinese Foreign Ministry spokesman, Tang Guoqiang, China would “shoot

\begin{itemize}
 \item 151 See id.
 \item 152 See id.
 \item 153 See id.
 \item 154 See id. at 407.
 \item 155 See id.
 \item 156 See id.
 \item 158 It appears, however, that the collective developing country consensus is becoming fractious. See Cheryl Hogue, \textit{Climate Change: Once Solid Developing Country Bloc Dividing Into Five or More Factions}, 21 \textit{Int’l Envt’l Rep.} (BNA) 1201 (Nov. 25, 1998).
\end{itemize}
down any treaty that would hamper developing countries’ hopes of prosperity.”

There is no doubt that, in poor developing countries, problems of poverty, famine, natural disaster and social unrest appear far more real than any long term effects of global warming. It is also incontrovertible that developing countries have a right to development, recognized by the UNFCCC in Article 3(4) as “a right to . . . sustainable development” requiring each Party to “take[e] into account that economic development is essential for adopting measures to address climate change.” In addition, Article 3(5) states that the Parties should cooperate to achieve “sustainable economic growth and development in all Parties.” This premise is incontestable, but as we have observed, environmental protection is an integral, if diminished, component of SD and SD cannot just be equated to development simplicitur.

The restriction of emissions reductions to developed countries alone adversely affects SD in other ways. Carbon dioxide emission controls will raise the cost in participating countries of manufacturing those goods whose production requires substantial energy. For these products, industries in developing countries such as China, India and Brazil will gain an advantage over industries in countries that adhere to emission controls. Hence, once developing countries have invested in production facilities as part of their economic development, they will be more reluctant to take emission control measures that threaten these activities.

C. Environmental and Economic Nonsense

The Kyoto Protocol does not make environmental sense. The core of the Protocol calls for the reductions of GHGs by at least 5% below 1990 levels between 2008 and 2012. What happens if these targets are perfectly met? The IPCC climate models dealing with central scenarios predict 1.4°C warming by the year 2050. If the same models are run, computing for the Kyoto Protocol mandated emission levels, there appears, under one viewpoint, only to be an

160. UNFCCC, supra note 3, art. 3(4), reprinted in 31 I.L.M. at 855.
161. Id. art. 3(5), reprinted in 31 I.L.M. at 855.
162. See Jacoby et al., supra note 12, at 60.
163. See Kyoto Protocol, supra note 1, art. 3, reprinted in 37 I.L.M. at 33.
avoidance of one-twentieth of one degree of the predicted 1.4°C warming.165 Another view is that the Kyoto Protocol helps only to the extent of a 16% reduction of global warming if that reduction is held stable for the whole of the century.166 But, of course, as previously stated, reductions by developed countries alone cannot hold reductions stable because the increasing emissions of developing countries will more than compensate for reductions by developed countries.

Historically, contributions to atmospheric GHGs have been made by the industrialized countries, led in volume by the United States. Unfortunately, forecasts for the next century show significant increases in emissions from developing nations, and emissions from such nations are projected to equal or exceed the amount emitted by developed nations by the year 2030.167 In contrast to the positions by developing countries, the U.S. Senate, as we have seen, resolved that any responsibility for reducing carbon dioxide cannot be borne by the developed countries alone. By 2010, developing countries are expected to account for 45% of worldwide GHG emissions, and China and India will have greater growth in emissions than all twenty-four member countries of the Organization of Economic Cooperation and Development combined.168

The refusal of the developing countries to control their emissions as part of the global effort to stabilize concentrations of GHGs presents a major diplomatic challenge.169 Current efforts to include developing countries within the emission reducing framework of the Kyoto Protocol have proven unsuccessful.170 By any analysis, portentous implications arise from the present diplomatic deadlock with regard to the cooperation of developing countries and the rising concentrations of GHGs.

165. See id.
166. See Jacoby et al., supra note 12, at 63-64
167. See Drumb, supra note 5, at 286.
169. See id.
170. The issue of binding emission controls on developing countries did not even make it to the agenda at the fourth conference of the parties (COP-4) at Buenos Aires in Nov. 1998. The efforts of the United States to include developed countries in the effort to stabilize GHGs were successfully thwarted by China and the “Group of 77.” See Climate Change: Proposal to Require Developing Countries to Reduce Emissions Rebuffed by China, 29 ENV’T REP. (BNA) 1337-38 (Nov. 6, 1998). While Argentina agreed to voluntary emissions limitations, they are exceptions to the overwhelming opposition of developing countries to submit to any GHG limitations. See William K. Stevens, Argentina Takes a Lead in Setting Goals on Greenhouse Gasses, N.Y. TIMES, Nov. 12, 1998, at A7.
Those advocating unilateral developed country emission reductions emphasize the symbolic value of cuts by developed countries which, according to them, will motivate and encourage developing countries to follow suit.\(^{171}\) This is an unfounded premise. Kyoto proponents mystifyingly claim that even though defiant developing nations have obdurately refused to undertake any reductions of carbon dioxide emissions, the United States nevertheless must set a moral example by accepting the costs of the Kyoto Protocol. By such selfless action the United States will shame other misguided nations into becoming responsible members of the community of nations by accepting carbon dioxide reductions.\(^{172}\)

While this might be a good script for a morality play, the international community of nations functions within a hard world of Realpolitik. All nations are fully aware of their statuses as co-equal sovereign entities and behave as rational entities who pursue their own national interests, expecting others to do the same. And that, as we have seen, is precisely what nations have done. It makes no sense to require one segment of the community of nations to forebear or desist from conduct which other members are free to carry out. Even more poignantly, it is nonsense to allow one section of the community of nations to flood mine shafts that are simultaneously being drained by others.

Second, the argument for unilateral developing country reductions assumes that developed countries will meet the unrealistic short-term obligations of the Kyoto Protocol. Such an assumption flies in the face of the available evidence.\(^{173}\) While the Kyoto Protocol demands at least a 5% reduction from 1990 levels in carbon dioxide emissions, according to the most recent Organization for Economic Cooperation and Development (OECD) evidence from twenty-nine industrialized (developed) countries, carbon dioxide emissions by energy use have increased 9% since 1990, now

\(^{172}\) Another problem with this strategy is that it is unclear when a country would be considered at the proper stage of economic development for moving to “developed” status, particularly if doing so leads to loss of eligibility in favorable economic development programs. See Cooper, supra note 168, at 78.

accounting for 54% of global carbon dioxide emissions. Among the signatories to the Kyoto Protocol, the increases were 10% in Japan, 12% in North America, and 16% in Australia. According to other estimates, U.S. emissions are likely to be 20 to 25% above 1990 levels by the year 2007.

Moreover, the U.S. has a 7% reduction target under the Kyoto Protocol 1990 figure, the European Union has an 8% reduction target and Japan has a 6% reduction target. But U.S. population growth over the twenty-year period to 2010 is forecast as 20%, whereas in Western Europe and Japan growth is projected at 2 to 3%. The U.S. has a much harder target to achieve, given the projected increase in its population. To achieve the 7% cuts below 1990 levels required by the Kyoto Protocol, the U.S. would need to reduce its carbon dioxide emissions by at least 30% in the space of four years and this according to some commentators is “simply laughable.”

As to the increasing volume of carbon dioxide emissions, some commentators suggest that developed countries could comfortably adapt to or mitigate the consequences of a doubling of GHGs. They argue that GHG reductions, in the long term, would occur naturally with the advance of technology, following investment cycles based on demand. According to one commentator, future carbon dioxide reductions should be left to the development of new reduced carbon technologies and better sources of energy driven by markets that demanded cleaner and cheaper energy.

The Kyoto Protocol, however, requires dramatic carbon dioxide emission cuts by 2010, without regard to investment and technology cycles. A fundamental question, then, is whether it is economically efficient and environmentally effective to demand that a manufacturer or utility incur significant costs in retrofitting to meet a short-term deadline, as opposed to phasing in more efficient equip-

175. See id.
176. See id.
177. See Kyoto Protocol, supra note 1, art. 3 and Annex B, reprinted in 37 I.L.M. at 33, 43.
178. See Jones, supra note 164, at 780-81.
179. See Jacoby et al., supra note 12, at 64.
180. See Rob Coppock, Implementing the Kyoto Protocol, 14 ISSUES IN SCI. & TECH. 66, 68 (1998). See also Alex G. Hanafi, Note, Joint Implementation: Legal and Institutional Issues for an Effective International Program to Combat Climate Change, 22 HARV. ENVTL. L. REV. 441, 448 (1998) (citing estimates of damage from doubling of carbon dioxide pre-industrial levels using 1988 GNP as ranging from 1.4% in the United States and 1.6% in the EC to 5.3% for China).
181. See Coppock, supra note 180, at 74.
182. See id. at 66.
ment and technology as old machinery and processes become obsolete. The clear answer emerging from an examination of a number of industries is that it is not. A few examples offered by Coppock are illuminating.\footnote{183}

Coppock first refers to the pulp and paper industry, an energy intensive and polluting industry.\footnote{184} If the Kyoto Protocol were implemented, the industry would have to undertake costly action to reduce emissions of carbon dioxide. This immediate costly action could not fully incorporate the benefits of a new energy reducing bleaching process being developed which has yet to be perfected and widely deployed. The industry would end up spending money now that could have been invested in the new bleaching process, delaying a natural reduction in energy use and carbon dioxide emissions.

Likewise, in the metal casting industry, new technology is being developed that would increase the yield of the casting process from 55 to 65%.\footnote{185} A higher yield means that less raw material and power will be needed for processing, leading to less carbon dioxide emissions. As with the pulp and paper industry, spending money to bring the new process online, rather than on controls, benefits both global warming and the manufacturer’s costs.

Another example offered by Coppock comes from the commercial building sector.\footnote{186} The replacement of static insulation (put in walls and roofs to increase thermal resistance) with “dynamic systems” like “computer-controlled windows” and “sensor-controlled ventilation systems” could decrease a building’s heating and cooling energy load by as much as 35 to 45%.\footnote{187} New buildings with such characteristics thus would use very little space heat.\footnote{188} Unfortunately, new buildings comprise only 2 to 3% of the existing building stock in any given year.\footnote{189} Also, almost 80% of commercial buildings in existence in 1997 will still be in use in 2010.\footnote{190} Coppock suggests that retrofitting existing buildings with dynamic insulation systems would be less cost effective than waiting for the natural

\footnote{183. The following seven paragraphs incorporate substantially the findings and suggestions of Coppock’s discussion of the difficulties in implementing the Kyoto Protocol. See Coppock, supra note 180, at 69-71.}

\footnote{184. See id. at 70.}

\footnote{185. See id.}

\footnote{186. See id. at 71.}

\footnote{187. Id.}

\footnote{188. See POLICY IMPLICATIONS OF GREENHOUSE WARMING, supra note 19, at 223. Building efficiency may also be improved by passive solar techniques. See id. at 220.}

\footnote{189. See Coppock, supra note 180, at 71.}

\footnote{190. See id.}
turnover to improve the energy consumption, i.e. carbon emissions. 191

Similarly, electric utilities would have to add costly equipment that would be used for only a few years beyond 2010. 192 The equipment would then be obsolete as more efficient generation equipment became available. Because retrofitting is the only mechanism to meet the deadline of the Kyoto Protocol, electric utilities’ finances would be compromised with the destruction of costly equipment before the expiration of their useful lives. Forcing utilities to incur short-term expenses will deprive them of funds that could be used to purchase more expensive, but more efficient, equipment when the time comes to replace current generators. Rates may be increased and the utility’s ability to bring online more efficient equipment would be jeopardized. A much bigger return would be achieved by the “wider use of combined systems such as cogeneration, where waste heat from electricity generation is used to power industrial processes or heat buildings.” 193

These examples make clear that a rush to adhere to the Kyoto deadline of 2010 will raise short-term costs considerably and siphon off money that could be used for smarter, long-term investments that would both reduce carbon dioxide by the same levels and result in lower costs and emissions of supplemental pollutants.

Coppock continues his analysis by pointing out that the U.S. Department of Energy’s Energy Information Administration estimates that carbon dioxide emissions will increase 30% by 2010 if no actions are taken, requiring annual emissions to be reduced by about 400 million tons to achieve 1990 levels. 194 The Environmental Energy Technologies Division at the Lawrence Berkeley National Laboratory calculates that U.S. emissions could be lowered about half the distance to 1990 levels through efficiency approaches costing about $50 per ton of avoided carbon emissions. 195 If the burden for this reduction were equally spread across all sources of emissions and all consumers bore the costs, this would result in an increase in the price

191. See id.
192. See id.
193. See id. Another helpful technology currently viable is the potential for coal-fired plants to utilize combined-cycle natural gas facilities to cut down on GHG emissions. It seems, though, that regulatory hurdles destroy the incentive to utilize the newer technology, because higher profits can be gleaned from grandfathered power facilities. See David Mallery, Comment, Clean Energy and the Kyoto Protocol: Applying Environmental Controls to Grandfathered Power Facilities, 10 COLO. J. INT’L ENVTL. L. & POL’Y 469, 473 (1999).
194. See Coppock, supra note 180, at 69.
195. See id.
of gasoline of 12 cents per gallon. An estimate garnered by the American Petroleum Institute is that “it would cost about $200 per ton to get all the way down to the 1990 level.” These estimates show considerable costs, yet the United States’ commitment under the Kyoto Protocol (7% below 1990 emissions) is greater; achieving the additional reduction would be even more expensive.

The U.S. commitment to reduce emissions more than 30% below what they otherwise would be in 2010 will therefore entail enormous changes in industry and consumer practices. Under this time scale of the Kyoto Protocol, the question is whether such huge efforts will be made. The answer given by the Clinton administration is that tax incentives, research subsidies, and trading will allow the United States to meet its goal with price hikes of only 4 to 6 cents per gallon of gasoline. But this can be accomplished only if abatement costs are cut in half through emissions trading with other industrial countries, as well as by another quarter from trading with developing countries. Robert Stavens, a distinguished economist advising the Administration, said the following of the Administration’s claims: “It is true that the impact can be relatively small—if this is done in the smartest possible way. But if we don’t do it that way it will cost 10 times what the administration is saying.”

V. THE WAY FORWARD

A. Future Scenarios

The IPCC has developed a range of six scenarios based on anthropogenic increases in GHGs and the Massachusetts Institute of Technology has developed seven forecasts of climate change. Between them, these sets of forecasts deal with temperature increases of between 1 to 5°C (2 to 9°F). Most analysts agree that the most
extreme of these scenarios implies significant risk to the earth’s life support systems, including ocean circulation, polar glaciers, unmanaged ecosystems, agriculture and human health.205 It is accepted that concentrations of carbon dioxide were fairly constant in the atmosphere at 280 parts per million (ppm) and that this figure has increased to 350 ppm today.206 While the life support systems of the world could live with a doubling of this figure, a quadrupling could lead to dangerous even catastrophic consequences.207 It does seem, therefore, that we do need to take some preventive action against possible calamitous circumstances. What is certain is that at present rates of discharge, carbon dioxide concentrations will double within the next 50 to 100 years and quadruple by the year 2150.208

A doubling of the pre-industrial concentration of carbon dioxide poses only modest environmental and economic problems and little, if any, economic problems if counteracted with good planning.209 If the pre-industrial concentration is quadrupled, the consequences might be disastrous. In this respect, some educated guesses can be made as to the relationship between temperature rise and the confrontation of serious thresholds. For example, various models indicate U.S. agriculture would have to shift to a different set of cultivars if the 5°C threshold is crossed, because of changed weather patterns and soil moisture. The alteration of rainfall patterns, along with the reconfiguration of ecosystems, would likely change the nutrient flows of Midwest soils, posing a serious threat to that region’s agricultural productivity. Similarly, bottomland hardwood forests of Texas might not be able to rebound from fires or storms, affecting viability of preserved and commercial forests there.

The fear is that at some point, continued temperature rise will trigger global changes of a magnitude that does not allow for adaptation. They would, in the language of the UNFCCC, amount to a “dangerous anthropogenic interference with the climate system.”210 Illustrative of such change, were it to occur, is ocean circulation. Salinity and temperature differentials in the oceans are significant contributing factors in driving what is called the deep ocean conveyor, a huge flow that sinks in the North Atlantic, runs

205. See Jacoby et al., supra note 12, at 58.
207. See Coppock, supra note 180, at 67.
208. See id.
209. This paragraph relies upon Coppock’s research of the impact of increases in carbon dioxide concentration in the atmosphere on agriculture. See id. at 68-69.
210. UNFCCC, supra note 3, art. 2, reprinted in 31 I.L.M. at 854.
around the African cape, and empties into the Pacific Ocean.211 Upwelling currents from this conveyer carry nutrients to the major fishing areas of the world.

Some commentators argue that sufficient warming could increase precipitation in the North Atlantic Basin enough to change salinity and alter ocean temperatures, perhaps even stopping the ocean conveyer.212 This might cause drastic weather consequences around the world, surpassing the effects of the El Niño Southern Oscillation. In particular, it is thought the cessation of the deep ocean conveyer would cool Europe significantly.213 It is thus critical that any attempt to control GHGs comprehend the long range nature of the problem and take practicable steps to deal with the situation.

\textbf{B. An Inclusive Treaty}

The first step in moving toward a long-term solution to climate change is to include both developing and developed nations in this earth saving enterprise. The inclusion of the developing countries must be on the basis of the concept of “common but differentiated responsibility” (CBDR) articulated in the UNFCCC. Any obligations to protect the climate need not fall disproportionately on the poor and the deprived. Given the enormous disparities of wealth amongst nations, equity, fairness,214 and efficiency require that discharging the burden of protection should fall differentially and more heavily on the richer nations. Climatic stability is a public good that is of critical importance to all humanity, and ought to be protected by the entire international community. In the absence of a system of international government that can act to protect public goods for collective benefit, other mechanisms should be found.

It may be necessary to work out a scheme that pays at least the poorest of the poor countries to reduce their emissions. There is much to commend the suggestion of one commentator that depending upon the circumstances, global environmental governance and

211 The ocean’s conveyor belt works in the following fashion: the upper loop carries warm waters from the North Pacific across the Indian Ocean, down around Africa, and up the Atlantic Ocean. See Richard A. Kerr, Warming’s Unpleasant Surprise: Shivering in the Greenhouse?, 281 SCI. 156, 156 (1998). North of Iceland, winds absorb the heat and carry it toward Europe, contributing to temperature differentials of as much as 10\textdegree{}C. See id. The flow of the winds also increases saltiness by evaporating freshwater, making the denser surface water sink. The colder, saltier deep water then flows to the south, completing the loop. See id.; See also Wallace S. Broecker, Thermohaline Circulation, the Achilles Heel of Our Climate System: Will Man-Made CO2 Upset the Current Balance?, 278 SCI. 1582, 1582-83 (1997).

212 See Kerr, supra note 211, at 156.

213 See id.

214 See JOHN RAWLS, A THEORY OF JUSTICE 103 (1971).
international environmental law should move from a “Polluter Pay Principle” to a “Beneficiaries Pay Principle.” But this should go hand in hand with other more flexible credits to developing countries for reducing GHGs. For example, commitment by developing countries to increased amounts of reforestation, population control measures, energy efficiency, more technology transfers, and more investment in R&D should be brought into any carbon dioxide reduction calculus.

This essay accepts the premise that the world can adapt to a doubling of carbon dioxide from pre-industrial levels. While developed countries can do so quite comfortably, some developing countries face a bleaker prospect. In such cases, there can be no doubt that the principle of CBDR embodied in the UNFCCC demands that the “specific needs and special circumstances” of developing countries, “especially those that are particularly vulnerable to the adverse effects of climate change” should be met by developed countries. These countries, already sorely stressed by socioeconomic and environmental problems that cause considerable human suffering, cannot cope with the added threats posed by climate change. These nations may not have the money to alter farming that might adapt to changing soil moisture or higher temperatures, or to implement widespread control and eradication programs to battle the greater spread of disease by insects or other means.

Developed industrialized nations are obligated to help meet these new demands under the UNFCCC, and it is just and fair that they should do so. Developing nations face so many other socioeconomic and environmental problems that the added challenges imposed by global warming may pose an insufferable burden. For example, even modest sea level rises may pose an

215. Jonathan Baert Wiener, Global Environmental Regulation: Instrument Choice in Legal Context, 108 YALE L.J. 677, 751-752 (1999). The “Beneficiaries Pay Principle” is desirable for regulatory instruments under a Voluntary Assent voting rule, where international agreements bind only those who consent to be bound. See id. at 737, 752. This means that those who benefit from global environmental protection must attract non-beneficiaries to participate in global international agreements like the Kyoto Protocol. See id. at 752.

216. UNFCCC, supra note 3, art. 3(2), reprinted in 31 I.L.M. at 854.

217. Id. art. 4(4), reprinted in 31 I.L.M. at 858.

ominous, even deadly prospect for island nations that are members of the Association of Small Island States.

Some commentators have argued that any additional suffering by developing countries will be real but pales in comparison to the suffering brought about by much larger forces in these countries such as war, oppression, and poverty. While this may be generally true, there are numerous exceptions. Consequently, the UNFCCC places special obligations on developed countries to help developing countries suffering from disadvantageous geographical, natural resource, or environmental circumstances such as those faced by small island countries and those with low-lying coastal areas. In any event, it would be ethically intolerable and morally offensive to permit nations to be swept over by rising seas that have been caused, in major part, due to the activities of developed countries. There surely must be a new international effort to save them from such a plight.

The approach to an inclusive treaty must proceed on many fronts, and no one formula can be applied to all developing nations. One way forward might be to model the treatment of some, though not all, developing nations on the Montreal Protocol on Substances that Deplete the Ozone Layer. China and India held out on signing that Protocol until an agreement about compensatory financing

220. See Burns, supra note 22, at 149.
221. See Coppock, supra note 180, at 68.
222. See UNFCCC, supra note 3, art. 4(8), reprinted in 31 I.L.M. at 858-59, placing a specific obligation on developed countries to help developing countries suffering from the effects of climate change such as:

(a) Small island countries;
(b) Countries with low-lying coastal areas;
(c) Countries with arid and semi-arid areas, forested areas and areas liable to forest decay;
(d) Countries with areas prone to natural disasters;
(e) Countries with areas liable to drought and desertification;
(f) Countries with areas of high urban atmospheric pollution;
(g) Countries with areas with fragile ecosystems, including mountainous ecosystems;
(h) Countries whose economies are highly dependent on income generated from the production, processing and export, and/or on consumption of fossil fuels and associated energy-intensive products; and
(i) Land-locked and transit countries.

In particular, the United States has engaged in a multitude of tasks in 44 countries around the world in meeting its commitment under the UNFCCC. See Jim Fuller, U.S. Programs Help Developed Countries Cope with Climate Change, WASHINGTON FILE (visited May 22, 2000) <http://www.usembassy.de/cop5/jf1101a.htm>.

had been reached.224 Quite clearly, the investment and effort necessary to control chlorofluorocarbons (CFCs) does not compare with the colossal problems of controlling GHGs. Nonetheless it may, for example, be possible to induce China, India and Brazil to join an inclusive treaty in exchange for consideration that is deemed fair and equitable. Such consideration should, however, avoid being seen as perverse incentives to these countries to emit more carbon dioxide to obtain greater compensation.

Recognizing the wisdom of using carrots and sticks, the Montreal Protocol also provides for trade sanctions restricting parties from trading in CFCs and CFC-related products with non-parties.225 A number of commentators feel that trade restrictions play a major role in preserving the integrity of the Protocol,226 while others argue that trade sanctions are preferable to incentives because they avoid perverse incentive efforts.227 While trade sanctions might not work on their own, it should be possible to devise an astute mix of sticks and carrots that will induce developed and developing countries to become parties to an inclusive global warming treaty.228

C. Research and Development

Dealing seriously with climate change also requires a substantial R&D program to produce new technologies that could bring about deep global emissions reductions and still allow robust economic growth.229 Such an effort should involve several wealthy

224 Harold K. Jacobson & Edith Brown Weiss, Compliance with International Environmental Accords: Achievement and Strategies, in INTERNATIONAL GOVERNANCE IN ENVIRONMENTAL ISSUES 75, 95 (Mats Roden et al., eds. 1997).

225 See Montreal Protocol, supra 223, art. 4, reprinted in 32 I.L.M. at 881-82. The Protocol regulated trade with non-parties, subject to stipulated procedures, in three ways. First, it banned the import and export of controlled substances from non-parties. Second, it banned imports of products containing controlled substances. Third, after a feasibility study, it banned imports from non-parties of substances made with, but not containing, controlled substances.

226 See, e.g., Robert Housman & Durwood Zaelke, Trade, Environment, and Sustainable Development: A Primer, 15 HASTINGS INT’L & COMP. L. REV. 535, 580 (1992). The impressionistic view, certainly in the United States, is that trade sanctions are the single most effective way of forcing foreign nations to adopt stricter environmental standards. There appears to be evidence either way. The literature is reviewed in Richard J. McLaughlin, UNCLOS and the Demise of the United States’ Use of Trade Sanctions to Protect Dolphins, Sea Turtles, Whales, and Other International Marine Living Resources, 21 ECOLOGY L.Q. 1, 25-29 (1994).

228 See Wiener, supra note 215, at 755-768 (discussing the participation efficiency of regulatory instruments).

229 Technological options for GHG substitution include replacement technologies, involving a 100% reduction in carbon dioxide emissions, and reduction technologies, which involve a reduction in
participating nations. Candidate energy technologies include nuclear, solar, hydroelectric, geothermal, and hydrogen from fossil fuel. Methods for safe and economical long-term storage of carbon in subterranean reservoirs, the deep ocean, and forests are also important research areas, as are technologies that enhance energy efficiency. In contrast, the U.S. “technology initiative” concentrates on subsidizing the adoption of existing technologies but would spend little in the search for long-term breakthroughs. Efforts elsewhere are similarly dwarfed by the challenge. These concrete steps could be treated as part of an overall planetary plan to deal with climate change.

Far more attention must be paid to the development of new technologies for reducing GHG emissions. It will be nearly impossible to slow warming appreciably without condemning much of the world to poverty unless energy sources that emit little or no carbon dioxide become competitive with conventional fossil fuels. Only a large R&D effort can have any hope of bringing this about, although it would be cheap relative to the cost of dramatic reductions in carbon dioxide emissions using current technologies. The range of technological options is wide; from using solar power to produce electricity to converting fossil fuels to hydrogen fuel and storing (underground or deep in the ocean) the carbon dioxide produced as a byproduct. Few of the alternatives currently under discussion, however, can be widely used at reasonable costs without fundamental improvements.

Investment in R&D on new long-term technical options was barely discussed at the Kyoto Protocol. One phrase advocating “cooperation in scientific and technical research” was tucked away in the text, but that was all; no nation was obliged to devote any resources to R&D. Politicians love to call for more research instead of more regulation, but there is little commitment to the long-term emissions of carbon dioxide. See Edward B. Barbier et al., Technological Substitution Options for Controlling Greenhouse Gas Emissions, in GLOBAL WARMING: ECONOMIC POLICY RESPONSES 109 (Rudiger Dornbusch & James M. Poterba eds., 1991).

230. See id. at 112-21, 139.

231. Carbon storage through afforestation remains effective, however, only for as long as the forest is expanding, otherwise carbon released by dying trees offsets that stored by new trees. See Cline, supra note 16, at 216-17. Nonetheless, Cline considers afforestation as a viable option for three reasons: (1) reducing existing deforestation in developing countries is a low cost alternative for reducing carbon emissions; (2) afforestation can provide a temporary window of several decades, allowing time for technological advancement and development; and (3) a strategy of afforestation and use of the resulting biomass for energy can provide for a closed cycle of zero net emissions. See id. at 217.

232. See Jacoby et al., supra note 12, at 66.

233. See Kyoto Protocol, supra note 1, art. 10(d), reprinted in 37 I.L.M. at 37.
development of greenhouse-friendly technology by those countries most capable of producing it.

D. Realistic Long-Term Implementation Strategies

As previously mentioned, it is suggested that the economies of industrialized nations could easily adapt to the climatic consequences of a doubling of pre-industrial atmospheric carbon dioxide.234 This is because the rate of change will be slow. The trend this century has been about 0.05°C to 0.1°C per decade. Investment cycles for most industrial sectors are rapid enough that suitable adjustments can be made along the way. Even agriculture ought to be able to cope. It takes about eight years to bring a new cereal hybrid into production, which would be needed to adjust to differences in soil moisture, and recent experience breeding disease-resistant rice suggests that genetic engineering can reduce this time. It also will not be long before agricultural implements are able to make “on-the-fly” soil-moisture measurement and precision delivery of fertilizer to offset changes measured.

Clearly, a permanent rise in temperature will give rise to a number of problems. Rising warmth and moisture would also broaden the breeding grounds for insects, most notably mosquitoes, increasing their spread of diseases like malaria, dengue, and yellow fever.235 However, lifestyle and public health measures such as mosquito control, eradication programs, and piped water systems, which have wiped out these epidemics in the United States, will far outweigh the effects of future climate change.

Even the effort to counter a possible sea level rise of 6 to 37 inches by the end of the next century is not likely to be catastrophic.236 In urban and industrial locations, the cost of protective sea walls, such as those used in Holland, will be cost effective.237 Elsewhere the coastline can be left to find its new level. The previously valuable property on the water’s edge will be replaced by formerly inland property that becomes newly valuable because it is now next to water. Obviously there will be winners and losers, but then there

234. See Coppock, supra note 180, at 68.
235. See POLICY IMPLICATIONS OF GREENHOUSE WARMING, supra note 19, at 41.
237. See Kathryn S. Brown, Taking Global Warming to the People, 283 SCI. 1440 (1999) (discussing worldwide efforts examining the impact of rising sea level and possible countering actions).
always have been. Urban expansion has created more winners and losers than moderate climate change will do.

A doubling would definitely change particular ecosystems, and the most important question may be whether significant disruption will result. Plant and animal life in bodies of fresh water and in wetlands will face new conditions due to higher temperatures and altered precipitation, and may have difficulty producing sufficient organic sediment and root material to adjust. Other so-called “loosely managed ecosystems” have more capacity to adjust. Ecosystems in general will be forced to reconfigure into new communities more rapidly than they have since the end of the last ice age. But research indicates they should be capable of adjusting quickly enough to maintain the grand mineral and nutrient cycles upon which life on earth depends.

We now know that ecological systems do not possess fixed equilibria, or static stability, and are characterized by changes not by constancy. Such a view sees nature in a constant state of change and flux, and stands in marked contrast to the earlier belief that ecological systems existed in perfect balance or stability. Many environmental lawyers and policy makers have been weaned on the view prevailing in the sixties and seventies that law and policy should strive to restore, and not tamper with, the primordial balance of nature. Thus, much bedrock U.S. legislation such as the National Environmental Policy Act, Endangered Species Act, the Wilderness Act, section 404 of the Clean Water Act protecting wetlands, and the broader non-degradation provisions of the Clean Air Act and the Clean Water Act are based on the premise that nature should be preserved or left untouched. According to this equilibrium paradigm, the absence of human intervention would

238. See POLICY IMPLICATIONS OF GREENHOUSE WARMING, supra note 19, at 39-40.
240. See id. at 165.
restore the balance of nature, and enable it to achieve a natural permanence of form and structure that persists indefinitely. 248

By contrast, the nonequilibrium paradigm considers living things and the external world not as separate static entities, but as interacting components of complex dynamic systems. 249 Today’s ecologists point out that humans and their environments are not “separate, static entities,” but are “interacting components of complex dynamic systems,” and that practically all inhabited environments are artificial in the sense that they have been profoundly altered by human cultures. 250 Human life implies interventions into nature, which if properly managed, according to the knowledge available to us, can be ecologically sound, and create new environmental values. 251 According to an important exponent of this viewpoint, it is not always true that nature knows what is best for other creatures, humans, and the environment. 252 Nature often creates ecosystems that are inefficient, wasteful, and destructive. By using reason, knowledge, imagination and toil, people can shape ecosystems that have qualities not found in wilderness. 253

What we see, therefore, is a historic confluence of politics and science: SD and the non-equilibrium paradigm; creating conceptions of resource use once eschewed by equilibrium ecologists; lawmakers and policymakers. The convergence of these two streams of thinking have heightened the need for a re-evaluation and re-defining of the rationales underlying environmental protection and integration in the United States as well as globally.

Finally, a well-designed, durable institutional structure for reduction of global GHG emissions can significantly reduce the cost of limits on global emissions. Here the key piece of unfinished business from Kyoto is implementing a system for trading the rights to emit greenhouse gases among participating nations. 254 In negotiating the

251. Id. at xv-xvi.
254. When COP-6 convenes in November of 2000, a key issue will be implementation of measures on buying and selling the right to emit GHGs, known as carbon trading. See Environment: Commission to Moot Carbon Trading Plan, EUR. REP., Mar. 8, 2000, available in 2000 WL 8840773.
details of this system, a focus on clear definitions, vigilant monitoring, and strict enforcement is essential. The market should be left unfettered. Many nations oppose trading in any form; others want to restrict its use in meeting emissions commitments. If they make it impossible to implement a plausible framework for international trading of emission rights, the Kyoto Protocol is headed for a dead end, obviating the point of ratifying it.

VI. CONCLUSION

Two articles published after the conclusion of this essay, reinforce key arguments advanced herein. First, the next dimension in the evolving saga of climate change must recognize the endemic uncertainties besetting scientific findings and conclusions about global warming. In a recent offering of remarkable cogency, two accomplished scientists — Daniel Sarewitz and Roger Pielke — demonstrate the extent to which the alleged scientific certainty surrounding the anthropogenic causes and consequences of global warming is a mirage. According to them, “predicting the impact on climate of reducing carbon dioxide emissions is so uncertain as to be meaningless.”255

Second, the long-term nature of climate change calls for solutions that are both environmentally sensitive and economically realistic within the framework of SD. Strategies for doing so must embrace the developmental priorities of both developing and developed countries and plot a course that acknowledges the risks of climate change as well as the costs of mitigation and adaptation. In a balanced and persuasive political essay, Senator Murkowski argues for just such a bi-partisan approach.256 Such global strategies must accept both the fragility of our life support systems, as well as the potential for human ingenuity to forge solutions to new challenges.

The task of developing a framework for international decision-making that can work for several decades is a formidable one. It is clear, however, that it should be based upon a tripod that includes the developing world, the importance of R&D, and the use of flexible provisions for emissions reductions. No serious response to climate

change is possible without these three vital elements and it is time to by-pass Kyoto and begin that challenging journey.
I. Introduction

The consistent conclusions of climate change modeling exercises are that many of the world’s major river basins may experience more severe droughts and floods in the coming decades and that aquatic ecosystems will, therefore, experience increased stresses. This Article examines the relationship between international water law and the projected impacts of global climate change on major river basins. The global climate change policy debate has two interrelated components. The first and major component seeks to find the most efficient and equitable means to reduce the root cause of...
anthropocentric climate change, increasing greenhouse gas emissions, in an effort to mitigate projected temperature increases. The second component accepts the projected increases and seeks to understand both the effects of global climate change and the impacts of those effects in order to adapt to them. The anticipated non-mitigation, global climate change response is adaptation to possible projected changes.

Water use regimes are prime candidates for adaptation for four reasons. First, the projected effects of global climate change may be substantial and dramatic, but they will be geographically unevenly distributed. The projected effects will be positive and negative, depending on the location of the basin. Thus, there is a need for varied local and regional responses rather than a uniform, global response, such as a carbon tax or tradable emission rights. Second, these effects, which may already be occurring, will likely materialize before mitigation becomes effective, if mitigation does, in fact, ever become effective. Third, water management regimes have some capacity to adjust to the projected adverse impacts, and adaptation is likely to be less costly than wholesale greenhouse gas emission rollbacks. Fourth, aquatic ecosystems can tolerate some level of stress for prolonged periods of time and still be good candidates for restoration.

The thesis of this Article is that adaptation to the projected adverse hydrologic impacts of global climate change requires the presence of a reasonably well-developed property rights regime in the effected basin, and that the regime must be supported by public and private adaptive management institutions. A property rights regime is a necessary condition but, alone, is insufficient to create fair risk-sharing and is insufficient to permit equitable adjustments to the inevitable inefficiencies of any sharing regime. A property rights regime can help accomplish the necessary reallocation in a way that allows users to share risks and to shift water fairly and efficiently among competing consumptive and non-consumptive uses, such as hydropower uses. Property rights regimes, however, have not historically performed an effective role in conserving aquatic

2. I adopt the distinction between effects and impacts offered by Dr. Nigel Arnell. He defines effects as “the biophysical consequences of changes in the climatic variables driving the hydrological system” and impacts as the consequences of the effects on specific resource users. See Nigel Arnell, The Impact of Climate Change on Water Resources, THE GLOBE (Dec. 1997) (visited Apr. 30, 2000) <http://www.nerc.ac.uk/ukgeroff/globe40.htm>.
ecosystems, because property rights are seldom dedicated to this function. Nonetheless, property rights can play an important role in aquatic ecosystem protection and restoration. There is, however, also a need to manage the flow of river basins, including the maintenance of flows which mimic the system’s natural hydrograph, better than we have in the past to accommodate the demand for existing and future consumptive and non-consumptive uses.

International water management and allocation regimes will face more difficult adaptation problems than domestic water law regimes for three primary reasons. First, although property rights must be defined and enforced before adaptation can take place, international water use regimes generally have less developed property rights than domestic regimes. For example, the general principles of international water law, reflected in the 1997 United Nations Convention on the Non-Navigation Uses of International Watercourses, create uncertain national rights regarding the use of shared waters. This uncertainty increases the transaction costs of adaptation because property rights must first be defined with greater precision. Second, international regimes are less flexible than domestic ones. Some international rivers have been allocated by treaties that create firm property rights, but the rights may calcify over time and prevent adjustment to changed conditions. The purpose of an international water allocation treaty is generally to allow the construction of upstream and downstream dams, and the ensuing regimes generally assume a fixed, perpetual water supply and flow allocation regime. No provision is usually made for future changed circumstances. Therefore, the parties to such international treaties are likely to insist that the status quo be maintained, no matter how inefficient, inequitable, or environmentally destructive. Finally, ecosystem protection remains subordinate to multi-purpose regional water development.

II. THE EFFECTS AND IMPACTS OF GLOBAL CLIMATE CHANGE: A CASCADE OF UNCERTAINTIES

Predictions about the consequences of global climate change in a given watershed or river basin must account for hydrologic, economic, and political uncertainty. Global climate change may

4. See generally NATIONAL RESEARCH COUNCIL, GLOBAL ENVIRONMENTAL CHANGE: RESEARCH PATHWAYS FOR THE NEXT DECADE (1999) (explaining the gap between what we know
alter precipitation and run-off patterns throughout the world, and the effects are extremely uncertain. A recent Intergovernmental Panel on Climate Change (IPCC) assessment concluded that "warmer temperatures will lead to a more vigorous hydrologic cycle," and, although both the amount and timing of rainfall may change, the geographic and temporal scale of the change is uncertain. Some regions, such as sub-Saharan Africa, may experience decreased precipitation and more extended droughts. Other regions will see increased precipitation and more frequent, more severe floods. Increased precipitation may not, however, translate into more available water supplies in all regions. In water-short areas with historically variable rainfall patterns, increased precipitation may actually exacerbate the problems associated with providing reliable water supplies. More precipitation may fall as winter rain rather than snow, and snowpacks may melt earlier, as warmer average temperatures indicate an earlier spring and faster water evaporation. Increased out-of-cycle rainfall is the projected pattern for parts of the western United States. Wetter, warmer weather could impair the ability of the existing systems of carry-over storage to provide reliable regional water supplies. Existing reservoirs may not be able to capture the increased winter run-off, and serious summer shortages may occur.

and what we need to know about the relationships between climate change and human and natural systems).

The National Assessment of the Potential Consequences of Climate Variability and Change for the United States ("National Assessment") was called for by a 1990 federal law and has been conducted under a plan approved by the National Science and Technology Council — the cabinet-level body of agencies responsible for scientific research.

A wide range of activities has been underway for several years under the coordination of the federal agencies of the U.S. Global Change Research Program (USGCRP). Among them are five comprehensive sectoral assessments addressing impacts on water resources, forests, coastal ecosystems, human health, and agriculture. This report addresses the state of the science for assessing the impacts of climate changes and variability for the water resources and water systems of the United States.

7. An early study by an Environmental Defense Fund economist concluded that water deliveries for federal and state water projects that serve California’s San Joaquin Valley could be reduced by as much as 25 to 28 percent. See generally Daniel J. Dudek, CLIMATE CHANGE IMPACTS UPON AGRICULTURE AND RESOURCES: A CASE STUDY OF CALIFORNIA (1990).

8. See Sandra Postel, PILLAR OF SAND: CAN THE IRRIGATION MIRACLE LAST? 85-86 (1999). There is also a significant school that argues that global climate change will be good for the United States and other temperate countries. See generally Thomas Gale Moore, CLIMATE OF FEAR: WHY WE SHOULDN’T WORRY ABOUT GLOBAL WARMING (1998) (counting increased water
Many sophisticated modeling experiments exist for predicting the location and timing of the effects of increased temperatures on water resources, but "estimates of the effects and impacts of climate change on water resources are very uncertain." There are three levels of uncertainty. First, there is meta uncertainty over the future rate of greenhouse gas emissions. Second, projected climate change scenarios must be translated into hydrologic ones, and numerous problems abound. Low flow models are more reliable than high flow ones; the confidence level of flow change predictions is high, but the confidence levels for quality and aquatic ecosystem changes are not as high. Third, there is a geographic scale problem. It is difficult to translate large-scale models into specific watersheds and to translate watershed models into regional predictions.

These uncertainties cascade into economic and political ones. River basins are physically and socially-politically dynamic. Changes in hydrology occur simultaneously with social and political change and the attendant landscape change that they may bring. Population-driven, increased demand is the most important variable. In many basins, such as the Colorado River and the Nile, the population’s demand for a reliable water supply is increasing. More people compete for the use of existing water entitlements. This competition both creates pressures for increased water use and creates shifts among established uses, often from agricultural uses to municipal and industrial uses.

Population pressure is not the sole source of new claim; in some basins, there are new claimants for uses that are not contemplated in the existing allocation regime. For example, in the Nile basin, upstream states now have the capacity to put waters to use. This capacity did not exist when Egypt and Sudan agreed to share the entire flow of the river. In other basins, environmental advocates are demanding that more water be allocated to uses such as wetlands protection, restoration, and the conservation of endangered species.

__supplies among the estimated $99 billion benefits that the global climate change will produce for the United States__).

10. __For example, a large-scale experiment is underway to attempt to model the relationship between forest clearing and the Amazon River’s water balance, which may have a substantial impact on the global water balance. See J.H.C. Gash & A.D. Culf, The Water Cycle in the Amazon Basin, the GLOBE (Dec. 1997) (visited Apr. 30, 2000) <http://www.nerc.ac.uk/ukgeroff/globe40.htm>__.
III. AN ADAPTION MODEL

Consumptive water users can adapt to an altered hydrologic regime in four basic ways: reallocation of existing uses; conservation; temporarily forgoing a use; or, permanently foregoing a use. Each strategy requires the existence of a robust property rights regime. A robust property rights regime, augmented by adaptive management institutions, can provide fair and efficient processes for allocating the risks of future shortages among users. Property rights regimes set the ground rules for curtailment and permit the creation of reallocation markets, which are the most likely sources of new supplies. They can also create conservation incentives to compliment conservation mandates, but there are many national and international institutional barriers to the use of this model for adapting to global climate change.

A robust property rights regime must be dynamic. A dynamic regime is one that can respond quickly to changed conditions and to market demand. Therefore, the legal and political barriers to change must be capable of rapid modification, in order for a robust property rights regime to exist. Most property regimes have a limited capacity to adapt to changed conditions, but they respond reasonably well to changes in market demand because property rights are alienable at low transaction costs.

Water law can display the opposite characteristics. Water law is a risk allocation regime, which contemplates periods of reduced entitlements in times of shortage and is premised on constant adaptation to changed conditions. However, the transaction costs of water transfers are higher than other forms of property rights because water rights are correlative and have a community interest component. Nonetheless, water law can be the foundation for adaptation. For example, the western water doctrine of prior appropriation allocates the risks of shortages by a simple principle: priority of use. It also allows the transfer of water rights at an acceptable cost.\(^\text{11}\)

The problem is whether the extreme risks of global climate change can be allocated within the framework of existing international water law regimes. International water law is a mixed riparian and appropriative regime. The laws of riparian rights and prior appropriation have different capacities to adjust to an altered

\(^{11}\) See generally LAWRENCE J. MACDONNELL, THE WATER TRANSFER PROCESS AS A MANAGEMENT OPTION FOR MEETING CHANGING DEMANDS (University of Colorado School of Law Natural Resources Law Center 1990).
hydrologic regime, but both systems share a common problem: major political, institution and legal barriers to declaring winners and losers, which is necessary if water is to be reallocated in times of severe water shortages. International water allocation also faces an additional problem: the inflexibility of most international water allocation regimes. Generally, international water allocation agreements are negotiated so that a dam can be built, and it is expected that any resulting water shortages will be short-term. Therefore, the allocation agreement often provides only for temporary reallocations and contains no mechanism to address long term declines in expected available supply.

Western United States water law, which forms the basis for international water law, is a potential adaptation model. The western doctrine of prior appropriation is premised on shortages allocated by priority schedules that provide a clear and complete risk allocation scheme in advance of the shortages. However, such risks do not materialize with any regularity in major river basins, so the law has not been fully tested for this purpose. For example, the Department of Interior has never had to enforce the priorities of the ‘law of the river’ on the lower Colorado River; although, it has put California on notice that it can no longer use Arizona’s surplus share. The focus of federal and state water policy from the conservation era has been to minimize the risks of shortages by constructing large carry-over storage facilities, as the Bureau of Reclamation has done on the Colorado River. Thus, reservoirs and groundwater basins probably will be subjected to only the mildest form of rationing during droughts. States have tried to accommodate unlimited growth on a limited water budget by providing ample margins of safety against shortages. Most irrigators have been buffered against the harshness of prior appropriation both by carryover storage and formal and informal mechanisms that share the burdens of shortages by pro rata rather than by pro tanto delivery reductions.

The law of prior appropriation is a formal risk allocation mechanism, but the expectation that it will be used during water shortages on a large scale is low. In contrast, riparian rights remains a tort regime that does not declare winners and losers in advance, but it provides some post hoc measure of compensation to losers. Despite the efforts of some to firm up riparian rights, the humid states that have adopted riparian rights have not joined the efforts because they assume that water will continue to be an abundant resource rather than a scarce resource.
IV. INTERNATIONAL WATER LAW

A. The United States Origins of Customary and Treaty International Water Law

Modern international water law is an evolving regime based on the United States model of prior appropriation, as modified by the Supreme Court’s doctrine of equitable apportionment. Like United States domestic water law, international water law has historically been designed to promote multiple use development by recognizing that each riparian state has an equal right to use common waters, subject to indeterminate sharing rules. Multiple-use of interstate streams was promoted by the United States law of equitable apportionment, which became the basis for international water law.12

Equitable apportionment projected the principal that prior uses should be protected across state lines and, ultimately, across national boundaries. In the early twentieth century, original jurisdiction, interstate water use disputes were adjudicated by the United States Supreme Court. Up-stream withdrawals along the Arkansas River in Colorado reduced available supplies downstream in Kansas.13 Chicago’s pollution, which discharged into the Mississippi River as a result of the reversal of the flow of the Chicago River, triggered a lawsuit by Missouri.14 Missouri alleged that Chicago’s discharge contributed to a cholera epidemic in Saint Louis. In this dispute, two lawsuits required the United State Supreme Court to develop a law of interstate water use, resulting in the use of the law of equitable apportionment to resolve conflicts between states.

The Supreme Court initially looked to the classic international law rule that all states have equal legal rights to fashion the principle of equitable apportionment, and the resulting doctrine now forms the basis of the sharing rules said to apply to international rivers. The core idea of equitable apportionment is that each state is entitled to a fair share of a common resource because each state has an equal right to develop the available resource. In the United States federal system, states are only quasi-sovereign; and, thus, it was possible for the Supreme Court to hold that the use of common resources, such as interstate streams and groundwater basins, must be shared among

12. I have developed this point at greater length in A. Dan Tarlock, Safeguarding International River Ecosystems in times of Scarcity, UNIV. OF DENVER WATER L.J. (forthcoming 2000).
Concrete sharing rules are difficult to define, though, because states often have widely different abilities to put inchoate shares to actual use.

The Supreme Court has developed a flexible formula that balances the need to accommodate new uses with the protection of existing economies. The open-ended equitable apportionment formula applied by the Supreme Court purports to weigh the comparative merits of different river uses over a long period of time. In fact, the Court has consistently rewarded early development by protecting prior uses against subsequent uses. For example, although in 1982 the Court suggested that it would deny existing uses protection and, instead, support a new and more efficient use of the water when “reasonable conservation measures by existing users can offset the reduction in supply due to diversion,” two years later, the court preserved the priority of a small reclamation district. The Court, however, did leave open the possibility that a new diversion could displace an existing one if the state made a strong showing of an immediate demand for a highly valued use.

Prior appropriation is not absolute, though, because the Supreme Court generally follows the law of the state in which the conflict arises. In humid states, the Court has not been called upon to protect large numbers of pre-existing consumptive uses, but it has been called upon to allocate mass flows and to protect lake levels. Thus, focus on in situ uses provides a precedent for sharing the risks of ecosystem protection that is lacking in prior appropriation regimes. For example, the Supreme Court has protected the ecological integrity of the Great Lakes system by substantially limiting out-of-basin diversions to protect pre-existing navigation uses. The Court has also prevented diversions that could impair the waste assimilative capacities of a river. But, in appropriation states, instream flows have not been protected.

Recent attempts to claim instream flows on the Platte River illustrate the resistance of the law of equitable apportionment to new management concepts. In the 1930’s, the Supreme Court adjudicated rights to the North Platte River between Nebraska and Wyoming.

users. In the late 1980s, Nebraska reopened the settled dispute to protest some new diversions by Wyoming. Environmental groups unsuccessfully attempted to intervene by arguing that any new decision must guarantee adequate winter flows, not apportioned, for whooping crane populations. However, the Court’s first decision in the reopened litigation did not deal with environmental issues. Fortunately, though, the Court’s opinion does not preclude environmental management of the Platte; it only renders it less legally secure. The three basin states, Colorado, Nebraska and Wyoming, ultimately signed a Memorandum of Agreement with the Secretary of Interior to develop a basin-wide wildlife protection plan, and as of mid-2000, they are negotiating a final plan. However, the hard fact is that no public or private entity can claim rights to a wildlife protection flow under the equitable apportionment doctrine.

B. The Evolving Regime of Customary International Water Law

Modern international water law is built upon the assumption that all states whose territories contribute to an international drainage basin have a right to an equitable share of the waters of the basin. The doctrine of equitable utilization or equitable participation is designated as a rule of customary international law. This principle was adopted prior to the rise of the environmental movement in the late 1960s and has been reaffirmed in subsequent non-binding declarations, such as the 1972 Stockholm Conference on the Environment, the 1977 World Water Conference in Mar del Plata, and the 1992 United Nations Conference on Environment and Development in Rio de Janeiro. Commentators have recently advocated an expanded sharing principle, a "community of

22. See id.
23. Instream flow rights have been recognized under both Nebraska law and the federal Endangered Species Act. See J. David Aiken, Nebraska Instream Appropriation Law and Administration, INSTREAM FLOW PROTECTION IN THE WEST, 16-1 (1993).
property” model, which is premised on co-riparian cooperation. Under this model, the rivers and associated resources would be managed jointly without regard to international borders, and the model is based on the principle that all riparian states are entitled to equitable participation in the development of the resource. However, this more progressive vision is not yet reflected in state practice. International water law remains simply a modest restraint on unilateral water resources development and promotes fair access to a common resource, which nation-states may use with minimal consideration of basin-wide impacts.

The most recent formulation of international water law is the United Nations Convention on the Law of the Non-Navigational Uses of International Watercourses (the Convention). On May 21, 1997, the United Nations General Assembly approved the Convention. On one level, the Convention will not have a substantial impact on the existing use of international bodies of water, if it ever comes into force, because the Convention is subordinate to existing allocation treaties. Article 3 of the Convention provides that “nothing in the present Convention shall affect the rights and obligations of a watercourse State arising” from prior agreements. This Article only expresses the hope that countries will “consider harmonizing” pre-existing treaties with the Convention.

Existing allocation regimes are premised on the availability of a guaranteed supply of water comprised of the average annual river flow augmented by carry-over storage. If droughts and increased evaporation occur, the available water from international rivers will be consistently less than the parties to the allocation originally expected, but existing allocation regimes generally have no

29. See id.
32. See Convention, supra note 30, at 704.
33. See id.
mechanisms to adjust to such changed conditions.34 Thus, international water law, as reflected in the Convention, will not promote adaptation in international river basins for two principal reasons. First, equitable apportionment shares the principal defect of the doctrine of riparian rights: uncertainty. It is not possible to predict the entitlement that the rules produce. Further adjudication or a treaty is necessary to create firm property rights. Otherwise, states have an incentive to hoard and waste water, rather than to share, reallocate and conserve it.35 Second, although the Convention is progressive, it still gives comparatively little weight to ecosystem protection. Therefore, it will be difficult to integrate ecosystem protection into any property rights based scheme of adaptation.

The Convention reporters were sensitive to the tension between development and environmental protection and tried to mitigate it.36 The Convention is progressive in that it seeks to combine the older idea that water law should create secure property rights in order to encourage development with the newer idea that the law should encourage aquatic ecosystem protection and restoration. Also, the final version of the Convention integrates some elements of the idea of ecosystem protection with multiple-use development. However, the integration is incomplete, and the Convention still subordinates ecosystem protection to consumptive use and development.

Pollution reduction and prevention is an important component of ecosystem protection, but focusing on pollution is too narrow, as it ignores the more subtle and long-term threats to ecosystems from diversions, barriers and land use practices. Modern, environmentally sensitive legal regimes attempt to correct this problem by mandating or encouraging long-term, monitored, adaptive ecosystem management that mimics the rivers’ hydrograph. The concept, though, remains vague and controversial,37 as well as very difficult and costly to integrate into

35 See Lee J. Alston et al., Land Reform Policies: The Sources of Violent Conflict and Implications for Deforestation in the Brazilian Amazon, J. ENVTL ECON. & MGT. (forthcoming 2000).

36 See Albert Utton, Which Rule Should Prevail in International Water Disputes: That of Reasonableness or That of No Harm, 36 NAT. RES. J. 635, 639 (1996).

existing river management regimes. In the end, international rules seem to adopt the view that adverse environmental impacts are an inevitable consequence of development and may be mitigated, rather than prevented, by affirmative management.

Article 7 of the Convention initially enjoined states from using water in such a way that would “cause significant harm to other watercourse states,” but two major objections surfaced, which led to a major revision. Proponents of multiple-use development raised the first objection. They criticized the proposed standard as a departure from the common understanding of equitable apportionment because it made development subordinate to environmental quality. Environmentalists criticized the original language in Article 7 because, in their view, it did not go far enough in prohibiting environmental harm, as it only prohibited harm “capable of being established by objective evidence.” Thus, it did not include the crucial concept of risk prevention. The basic solution, proposed by the last reporter, made the duty to prevent pollution subordinate to the right of equitable utilization, while creating a flexible process to resolve disputes. Article 7 was redrafted to impose a process duty on states not to cause significant pollution that was subject to an exception for extraordinary circumstances:

Watercourse States shall exercise due diligence to utilize an international watercourse in such a way as not to cause significant harm to other watercourse States, absent their agreement, except as may be allowable under an equitable and reasonable use of the watercourse. A use which causes significant harm in the form of pollution shall be presumed to be an inequitable and unreasonable use unless there is: (a) a clear showing of special circumstances indicating a compelling need for ad hoc adjustment; and (b) the absence of any imminent threat to human health and safety.

39. See *id*.
The final version of Article 7 accords equitable utilization a strong preference over the no-harm doctrine and environmental flow maintenance. This final version is a victory for slower developing upstream states, and it provides:

1. Watercourse states shall, in utilizing an international watercourse in their territories, take all appropriate measures to prevent the causing of significant harm to other watercourse states.
2. Where significant harm nevertheless is caused to another watercourse state, the State whose use causes such harm shall, in the absence of agreement to such use, take all appropriate measures, having due regard for the provisions of Articles 5 and 6, in consultation with the affected State, to eliminate or mitigate such harm and, where appropriate, to discuss the question of compensation.

The Convention is also an advance beyond prior formulations of equitable apportionment because it places greater emphasis on conservation and alternatives. Article 6 requires the consideration of “geographic, hydrographic, hydrological, climatic, ecological and other natural factors,” as well as consideration of factors of a national character and makes relevant any available alternatives of “comparable” value when deciding whether a planned use is equitable and reasonable. Unlike United States law, Article 5 (f) makes “[c]onservation, protection, and the economy of use of the water resources” a relevant factor in determining whether a use is reasonable and equitable. Article 5 (b) could be the basis for a state to adapt to a decline in average long term supplies by eliminating wasteful uses.

There is little firm, international, aquatic ecosystem protection law. Both the undeveloped state of the law and the possible emergence of new principles capable of supporting climate-change driven initiatives are illustrated by the International Court of Justice’s decision in the Gabikovo-Nagymaros dam decision which 1)

43. Convention, supra note 30, at 706.
44. See Sherk, supra note 31.
45. Convention, supra note 30, at 706.
46. Id. at 705.
affirmed the primacy of equitable apportionment, 2) suggested that it can include an aquatic ecosystem conservation component, 3) rejected an ecosystem protection claim by a downstream riparian state based on the precautionary principle.47 The opinion does offer some hope that international environmental and water law will recognize that riparian states have a right to protect their riverine ecosystems from the actions of other states and also will recognize that cooperation and shared management may be required to enjoy this right. The facts of the case were not ideal for the establishment of such a claim, but the foundation for future protection through adaptive aquatic ecosystem management is presented in the majority opinion, as well as in the Separate Opinion of Vice President Weeramantry, which posited that the interrelated principles of environmentally sustainable development and cautionary environmental assessment and management are erga omens customary rules.48

C. Case Studies

1. The Great Lakes

The Great Lakes system illustrates a potential adaptation model in which all basin users share fairly the risks of climate variability. The Great Lakes are one of America’s largest fresh water reserves and, as such, are comparatively less vulnerable to the projected effects of global climate change. However, the amount of fresh water in the lakes makes them a prime candidate, at least in the eyes of many in Canada and the United States, for trans-basin diversions to augment supplies in water-short areas. Global climate change helps fuel the persistent regional fears that the lakes will be tapped to augment water supplies outside the basin. On one level, the lakes are a classic example of an under-developed property rights regime. However, there is an inchoate Law of the Lakes, and its most interesting feature is the preference it accords to non-consumptive uses over consumptive ones. The Law of the Lakes also gives considerably more weight to the conservation of the lakes’ ecological services than other allocation regimes. The seven littoral states, the Canadian provinces of Ontario and Quebec, and the national governments of the United States and Canada have evolved a weak

48. See id. at 88 (giving the separate opinion of Vice president Weerantry).
legal regime to protect the most important regional component of the lakes, the maintenance of naturally fluctuating levels, which can be the basis for adapting to global climate change. The present regime has minimized conflicts by limiting and discouraging consumptive use, but it has also retarded the development of a firmer property rights regime for the lakes.

The Great Lakes have a variable climate that produces fluctuating lake levels. If warmer weather produces more prolonged droughts, longer periods of low water levels will likely occur. Historically, two strategies have been used to share the risks of fluctuating levels. First, high levels are assumed to pose a risk that all shoreline property owners and commercial navigation must anticipate. For example, in the mid-1980s, a great deal of attention was focused on engineering options, such as dredging, to mitigate the potential and actual flooding caused by high water levels. This high water level issue evaporated, though, during the drought years of the late 1980s. Second, the littoral states and the United States federal government have been more proactive in stabilizing levels by limiting in-basin and out-of-basin diversions. The current law of the Great Lakes assumes that the lakes are fully allocated and that there should be no major, new diversions. A recent International Joint Commission (IJC) report characterizes the lakes as a “nonrenewable resource” because less than one percent of the lakes’ waters are renewed annually by precipitation. The report concludes that “[i]f all interests in the Basin are considered, there is never a surplus of waters in the Great Lakes system.” The question is whether this assumption can sustain itself in the face of prolonged droughts if regional and non-regional users attempt to tap the lakes.

51. A study done pursuant to a 1977 Canada-U.S. Reference to the International Joint Commission on the costs and benefits of limited regulation of Lake Erie to reduce the damage from high water levels, concluded that “no further or more detailed studies of limited Lake Erie regulation for the purpose of reducing high water levels be considered in view of the adverse impacts and the wide disparity between the costs and benefits of such regulation.” INT’L JOINT COMM’N, LIMITED REGULATION OF LAKE ERIE 44 Great Lakes — St. Lawrence Water Level Information Office, Water Issues Division, Meteorological Service of Canada — Ontario, Environment Canada — Ontarior Region ed., 1983).

52. See Changnon, supra note 49.

53. Id.
Lake use is controlled by three overlapping legal regimes: state/provincial, national, and international. All three regimes can be characterized as immature legal regimes in that the use of the Great Lakes is regulated far less than other major water resources. Furthermore, the Great Lakes are physically managed less than other water resource systems such as the Colorado and Columbia Rivers or even the Mississippi River. The Great Lakes are characterized by minimally quantified and managed rights. The reasons for this characterization are both physical and institutional. The basin is basically a closed, balanced system. There are only five major in-basin or out-of-basin diversions. Most diversions are non-consumptive, and there is one major diversion into the basin, which is the Long Lac-Ogoki diversion from the James Bay basin into Lake Superior. The Lakes flow very slowly from Superior to the Saint Lawrence River. At the present time, only the levels of Lakes Ontario and Superior are regulated by dams and locks. The lack of regulation is a function of the fact that "[f]or the most part, the Great Lakes act as a natural system and water will flow through the system only as quickly as nature will allow." Sometimes, water takes as long as twelve to fifteen years to flow through the system. For this reason, the rights of users and littoral states remain largely inchoate, with the exception of the Chicago diversion. As a matter of United States federal common law, all littoral states have an equal right to a fair share of interstate waters along or within their borders, but these rights must be claimed and confirmed by a judicial proceeding or by congressional legislation.

a. The United States Federal Government’s Interest

The United States federal government has an overarching interest in the allocation and use of the lakes, and, constitutionally, the federal government has much power over the Great Lakes. Disregarding Canadian interests in the lakes, the federal government could do anything from draining the lakes to reestablishing an inland sea in the Great Basin in Idaho, Nevada, and Utah to dedicating their use exclusively to be Great Basin States. The real issue is not, however, what the federal government could do, but what it has done and is likely to do. Federal power over the Great

Lakes has followed the pattern of federal power over water resources established in the nineteenth century. Aside from navigation protection, the federal government has deferred to state water policy. Congress has allowed the littoral states to develop an anti-basin diversion strategy and has ratified it by legislation, which allows states to prohibit new out-of-basin diversions.

b. The State Interest

By virtue of their ownership of the Lake beds (lands underlying the mean high water mark) and their control of littoral access, the seven Great Lakes states and the Provinces of Ontario and Quebec have the primary interest in regulating the Lakes. State and provincial power is, of course, subordinate to the power of the national governments to regulate lake use. The power of the national government to regulate lake use is plenary in the United States, but it is more circumscribed in Canada, due to the greater constitutional powers of the provinces. The littoral states and Canadian provinces have used their political power to control the use of the lakes in two related ways. In 1985, they agreed to the non-binding Great Lakes Charter, which provides that all states consult with each other and the Province of Ontario before they approve an out of basin diversion under state law. The Charter was ratified by Congress in 1986, and this charter, which allows any governor to veto a diversion, presumptively exempts out-of-state diversions from the dormant commerce clause; however, its constitutionality has never been tested.

Since 1986, there have been several small, municipal diversions approved. The potential use of the Charter to control lake use by preventing out-of-basin diversions for the alleviation of a prolonged drought is illustrated by the fate of former Illinois Governor James Thompson’s proposal to triple Lake Michigan diversions during the

58. A widely circulated, 1998 joint Canada-United States legal study prepared for the Great Lakes Governors has concluded that the Water Resources Development Act of 1986 violates, inter alia, the dormant commerce clause, the non-delegation doctrine and the due process clause. For a skeptical assessment of these assertion, see Joseph W. Dellapenna, The International Joint Commission Considers Water Exports From the Great Lakes, 3 ABA WATER RESOURCES COMMITTEE NEWS LETTER, Jan. 2000 at 10.
summer drought in 1988. \(^{59}\) As the Mississippi River’s water level dropped, barge navigation was impeded, and Governor Thompson wanted the trans-basin diversion to augment the river’s record-low flow. The proposal, allegedly drafted to aid downstate grain exporters who were major campaign supporters, was blocked by protests from Ohio, Wisconsin, Minnesota and Canada. Governor Thompson dropped the proposal in the face of intense interstate and foreign opposition. \(^{60}\) The chief legal basis for the objections to his proposed quick navigation fix was Illinois’ failure to follow the Great Lakes Charter consultation procedures. \(^{61}\)

If prolonged lake level declines occur, the Great Lakes states will invoke the doctrine of equitable apportionment in an attempt to prevent new diversions and to ensure that the natural lake flow regimes continue to function. Each littoral state has an equal right to use interstate waters that border it. This right includes both the right to consume a fair share of the water and the right to be free from pollution. Equitable apportionment is the source of the rights of states which border a common water source to (1) confine use of that resource to littoral or riparian states and (2) develop a framework to share the resource in times of shortage. Equitable apportionment can be a global climate change risk sharing mechanism, but the difficulties of judicial administration severely limit its potential role. Courts are reluctant to anticipate allocation problems, and any courts that do attempt judicial allocations are subject to congressional scrutiny.

Equitable apportionment, of course, cannot create increased lake flows to counter higher possible evaporation levels, but apportionment could perform two more functions. First, it could prevent the use of the Great Lakes to solve other climate change-induced water shortages, such as increased irrigation demand in the Great Plains or diminished navigable capacity along the Mississippi. Second, equitable apportionment could ensure that the costs of lake level decline are shared equally by all of the Great Lake states.

61. See Irish, supra note 59, at 407-409 (containing a summary of the Canadian parliamentary debates in opposition to the proposal).
c. International Interests

All of the Great Lakes, except Lake Michigan, are international, as well as interstate, waters. In reality, all five Great Lakes are international water bodies, because Lake Michigan drains into international water. Thus, international institutions, as well as those of the states and provinces, have a stake in use decisions. Therefore, the provinces of Ontario and Quebec and the federal government of Canada are stakeholders in any major decision affecting any one of the five lakes. In brief, both customary international law and the 1909 Boundary Waters Treaty limit the power of both the United States and Canada to unilaterally undertake a large diversion. Article I of the 1909 Boundary Waters Treaty affirms the right of free navigation, and Article III requires International Joint Commission approval before the natural level or flow of the boundary waters can be altered. Lake Michigan is excluded from the Treaty. However, the Treaty has been invoked by both sides of the Chicago diversion controversy. The United States and Canada have claimed that a diversion in excess of Chicago's original Army permit violates the Treaty because it lowers the natural levels of the other four lakes, and Chicago has argued that the exclusion of Lake Michigan grandfathered Chicago's pre-treaty proposed diversion of 10,000 c.f.s. The issue was not resolved in the litigation, but the controversy illustrates the relevance of the Treaty to all lake-use decisions.

Customary international water allocation law is equally unsuited for providing a framework for co-riparians to adapt to global climate change. The international community has accepted the principle of equitable apportionment as the ground rule of international water allocation. The core idea of equal development opportunity is at the heart of the Convention and will be the basis for the argument that development has priority over aquatic ecosystem protection. The Convention’s innovations are commendable, but the fact remains that the protection of a river system’s ecological integrity remains secondary to the promotion of development. Specifically, the Convention makes it difficult to promote the protection of the ecological integrity of river systems for two principal reasons. First,

63. See Williams, supra note 24, at 156, 163-65.
64. See Boundary Waters Treaty, supra note 62.
flood plain protection and wetland protection are largely excluded from these new rules, which are focused almost exclusively on pollution prevention. Second, rivers are still not viewed as ecosystems.

More recently, some legal commentators have suggested that any national effort to prohibit the export of water from its territory violates GATT or NAFTA, but this is an untenable position. International law gives a nation complete control over the development and use of its resources, as long as the nation does not cause or allow trans-boundary pollution. Therefore, GATT and NAFTA should be read only to embody the principle that if a country decides to turn a natural resource into a commodity, it must permit trade in a non-discriminatory manner. International law does not require a country to share its raw resources with other countries. NAFTA countries have addressed this issue by declaring that raw water is not a good but this declaration is a soft law and does not apply to GATT.

66. See Bengt Broms, Sovereignty Over Natural Resources, in 10 ENCYCLOPEDIA OF PUBLIC INTERNATIONAL LAW 306 (1987) (giving a history of the relationship between the right to develop and state sovereignty). In modern environmental law, however, the sovereign right to develop continues to be the real practice of the international community. The principle is beginning to play a role in water use controversies. The Canadian Provinces and the United States that border the Great Lakes are concerned about the environmental risks and other risks posed by possible withdrawals for bulk tanker shipments. The right to develop is the conceptual basis for an anti-export strategy. It can be argued that GATT and NAFTA invalidate all flat export bans. GATT, Article XI, bans "prohibitions other than duties, taxes or other charges" on exports and imports, but Article XX allows a state to defend an export ban that is necessary to conserve exhaustible natural resources. The Water Resources Act of 1986, 42 U.S.C. § 1926d-20 (1986), allows any Great Lakes state to veto any withdrawal from the basin. The opposing argument is that neither GATT nor NAFTA changes the basic principle that state sovereignty allows a state to decide whether or not to allow trade in raw natural resources. Several World Trade Organization (WTO) decisions have rejected the conservation defense when a nation has attempted to conserve marine resources outside its territory. However, these decisions do not preclude the application of environmental and other conservation measures to a nation's internal waters because the measures are premised on the protection of state sovereignty over internal resources. See generally WTO Appellate Body Report, United States-Standard for Reformulated and Conventional Gasoline, 35 I.L.M. 603 (1966); WTO Appellate Body Report, United States-Import Prohibitions of Certain Shrimp Products, WT/DS58/AB/R (1998); see also Bret Puls, The Murky Waters of International Environmental Jurisprudence: A Critique of Recent WTO Holdings in the Shrimp/Turtle Controversy, 8 MINN. J. GLOBAL TRADE 343 (1999). Traditional water conservation management does not violate the fundamental premise of trade law that all trade partners be treated in a non-discriminatory manner. See generally INTERNATIONAL JOINT COMMISSION, PROTECTION OF THE WATERS OF THE GREAT LAKES: INTERIM REPORT TO THE GOVERNMENTS OF CANADA AND THE UNITED STATES (Aug. 10, 1999).

67. The three NAFTA countries have agreed to exclude non-bottled water from the agreement. Also, all Canadian provinces, with the exception of Quebec, have agreed to ban bulk water removal from the Canadian portion of the country’s major drainage basins. The policy will be implemented by each province and contains several exemptions and exclusions
2. The Two Niles: The African and the American (the Colorado River)

The stories of the two Niles illustrate the difficulties of adapting existing allocation regimes to global climate change. Both basins suffer similarly in that each is a long, hard working river in an arid region, with rapidly increasing populations,\(^68\) whose water resources must be shared among many competing uses. Thus, each is a possible loser as average temperatures increase.\(^69\) Also, both basins are over-appropriated. For example, the Nile's mean annual discharge is slightly larger than assumed in the 1959 Nile Waters Agreement, but current discharge is still less than the current demand.\(^70\) In each basin, the nations or states that contribute the most to the river use it the least. The disparity is most pronounced regarding the Nile; the upper riparian humid equatorial nations of Burundi, Kenya, Rwanda, Tanzania, Uganda, Zaire, and Ethiopia contribute 86% of the supply but consume less than 10% percent of it.\(^71\) Arid Egypt and Sudan account for over 90% of water withdrawals.\(^72\) The upper Colorado River basin uses water more proportionately, but three of the four basin states, including New Mexico, Wyoming and Utah, are expected to use less than their entitlements for the foreseeable future.

There are also major differences between the two basins. In the Nile basin, the major water use will continue to be irrigation for agriculture, and the question is whether the lower basin states of Sudan and Ethiopia can increase their irrigated acreage given Egypt's present monopolization of the river. The problem is compounded by projected usage increases in Kenya, Tanzania and Uganda. Also, the regimes of the basins are different. The Nile allocation regime is an
incomplete regime that breeds intense political conflict. The 1959 Nile Waters Agreement was negotiated between Egypt and its immediate upstream neighbor, the newly independent Sudan, to allow the construction of the High Aswan Dam. The agreement allocates a fixed amount of water to each state and the evaporation losses between Egypt and the Sudan, but it does not appear to bind the other basin states.73 Ethiopia is the source of 85\% of the flow, but Egypt has already put 110\% of the river’s capacity to use.74 Furthermore, global climate change may alter the river’s flow and exacerbate tensions.75 Ethiopia has ambitious development plans on the Blue Nile and perceives the treaty to be inequitable.76 Moreover, the treaty provides only a weak mechanism for short-term drought relief.77 In short, at present, there is no incentive for all basin states to agree on drought contingency plans until each state has some recognized entitlement.

In contrast to the Nile regime, the Colorado River is completely allocated among the seven basin states and the United States and Mexico by treaty, interstate compacts, congressional statutes, and Supreme Court decisions. The status of this regime suggests that adjusting to changed conditions should be easier. Many experts have suggested that the projected effects of global climate change can be mitigated by increased reliance on water markets or through adjustments in existing allocation regimes. However, international water allocation is a prime example of the lack of adaptation mechanisms in existing allocation institutions. International river agreements are often negotiated so that a dam can be built, and the underlying expectation is that any resulting shortages will be short-

73 The issue is complicated by several major agreements signed when Italy controlled Ethiopia and countries of the Upper Nile basin were colonies of Belgium and Great Britain. For example, the 1891 Protocols Between the Governments of Great Britain and Italy, for the Demarcation of Their Respective Spheres of Influence in Eastern Africa prohibit Ethiopia from constructing any works that interfere with the flow of the Nile. A 1929 Exchange of Notes Regarding the Use of the Nile waters for Irrigation between Egypt and Great Britain representing her Upper Basin Colonies and the Sudan confirms Egypt’s prior rights. Egypt maintains that these agreements are still in force, but the other countries argue that they terminated when Italy was driven out of Ethiopia and when Kenya, Tanzania and Uganda became independent states. See Christina M. Carroll, \textit{Past and Future Legal Framework for the Nile Basin}, 12 GEO. INT’L ENVTL. L. REV. 269, 276-279 (1999).

74 See Sherk, supra note 31.

76 See Ilan Berman & Paul Michael Wihbey, \textit{The New Water Politics of the Middle East}, STRATEGIC REVIEW 45, 49, Summer, 1999.

term and will be mitigated by the reservoir’s carry-over storage. The agreements often provide only for temporary reallocations and contain no mechanism to address long term declines in expected available supply. Furthermore, there are usually no provisions for the maintenance of minimum environmental flows. These problems are exacerbated by the fact that once a regime goes into effect, strong reliance interests begin to build, and protection of user expectations is, of course, essential to the legitimacy of any allocation regime. However, expectations can calcify if the parties fear that any change which increases the risk of a decrease in available water will put them in a worse position. Therefore, parties to the agreements will block any proposed reallocation adjustments, no matter how drastically conditions change. The Colorado regime in the United States is an example of a regime suffering from excessive fears of change.

The Mexico-United States allocation regime is a classic example of a regime that provides no effective mechanism for fairly sharing the risks of changed conditions. The Mexican-United States Treaty, which allocates the Colorado River between the two countries, provides that the United States need not fulfill its delivery duty in extraordinary drought. It is not clear whether this provision would apply to global warming, but Mexico may not be guaranteed a long-term firm entitlement. To complicate matters further, if the normal drought mechanisms are used, the resulting allocations may be widely perceived as inefficient and unfair; and, therefore, the allocations will not be followed. In short, adaptation may not be a realistic option when an allocation regime lacks mechanisms to deal with changed conditions. The current interest in restoring the Colorado Delta ecosystem in Mexico raises additional adaptation problems. The most radical potential restoration strategy is to breach the Glen Canyon Dam. There is, however, no guarantee that any of the increased flow of the Colorado River would reach Mexico.

Water marketing has been proposed as an adaptation strategy for overcoming treaty limitations. Economists have long criticized water law because it ignores higher, alternative values of water. They assert that too much water is used to grow surplus or low-valued

crops, that too much water is used in a wasteful manner, and argue further that increased transfers are desirable. Prior appropriation allocates the risks of shortages by a simple principle: priority of use. The question, then, is how flexible the water transfer system will be in the future. Two sets of problems must be addressed, one institutional, and the other distributional. The first inquiry is whether water users will respond sufficiently to market incentives. The second and more difficult inquiry is whether the redistributions commanded by the market are fair and consistent with ecosystem sustainability in both the short run and long run.81

International water transfers face a number of barriers that differ in degree, if not in kind, from those faced by domestic water transfers. The first barrier is conceptual, or physiological. In order for water to be transferred, it must be perceived as a commodity. Domestic legal systems that allow the creation of semi-exclusive water rights solve this problem. Once a property right exists, the major step toward commodification has been taken. Alienability is a standard, but not inevitable, attribute of a property right. Many countries will exhibit a dual attitude toward water in that water will be recognized as a commodity within the country’s borders but not outside its borders. Countries will invoke state sovereignty as the basis for the right to keep water out of the market. Canada has taken this position with respect to its waters as a result of the possibility of the transport of bulk water from the Great Lakes, as well as from other waters, for resale in arid countries.

Articles III and VIII of the 1922 Colorado River Compact have been cited for the proposition that the Compact precludes inter-state, inter-basin, or international water transfers. Article III (a) gives each basin a perpetual right to “the exclusive beneficial consumptive use of 7,500,000 acre-feet per year”,82 and Article VIII provides that all rights, except 5,000,000 acre feet of present perfected rights, shall be satisfied “solely from the water apportioned to that basin in which they are situate.”83 Too much is read into these words; the provisions were primarily intended to preserve the Upper Basin future rights against the faster growing Lower Basin, to block an appropriation of surplus waters beyond those expressly allocated by the compact, and to limit any future Lower Basin rights to the

83. Id. at 11.
7,500,000 acre feet, plus the hypothetical 1,000,000 care foot surplus. These provisions should be waivable by the intended beneficiaries if no other state interest or federal interest is injured. In addition, any water transfer must be consistent with the law of rivers, federal reclamation law, and state transfer law.

The dichotomy between water as a sovereign resource and a commodity is present in water allocation agreements. Transfers of compact surplus entitlements between Upper Basin and Lower Basin states have been proposed to accommodate new environmental and urban needs, and there is movement in this direction. In 1999, the Bureau of Reclamation authorized voluntary transfers of surplus entitlements among Lower Basin states. The Department of Interior’s Final Rule for Offstream Storage of Colorado River Water allows authorized state entities in the three lower Colorado River Basin states of Arizona, California and Nevada to store unused Colorado River entitlements water, water within their Compact or surplus entitlements, in off-steam reservoirs and aquifers. After unused surplus entitlements have been offered to entitlement holders in the storing states, the Secretary of Interior may release the water pursuant to a voluntary Interstate Release Agreement for use in another Lower Basin states. It is important to introduce such flexibility into a rigid regime in a way that does not risk impairing existing entitlements, but the idea has been fiercely opposed by many stakeholders in the Basin as inconsistent with the law of the river. For example, American Indian tribes argue that the rules allow the use of water that is subject to federally reserved Indian water rights. Also, environmental groups argue that the rule will have indirect and cumulative negative impacts on wildlife and critical habitat.

The Colorado River basin states and stakeholders must ultimately come to the realization that the scientific and economic assumptions behind the Colorado River compacts must be adjusted to the changing demands on the river, both in the United States and in Mexico. The 1944 treaty between Mexico and the United States has been amended to incorporate maximum salinity levels into the Mexican delivery obligation, so the precedent has been set to address environmental problems on the Mexican portion of the Colorado.

85. See id.
Voluntary transfers among basin states and between the United States and Mexico are a fair way to accomplish this.87

V. CONCLUSION

The development of water-related adaptation strategies will have to wait until science provides a better understanding of the relationship between global climate change and normal variations on workable geographic scales. This Article has suggested that property rights-based water allocation regimes have some potential to adapt fairly and efficiently, but these regimes must be supplemented by adaptive management institutions for the protection of vulnerable ecosystems. International water law can best be described as an inchoate property regime balanced by limited ecosystem protection. Before they can be the basis of adaptation to global climate change, existing allocation regimes must be modified to permit more flexible responses to changed conditions, and new regimes must be created within the framework of the United Nations Convention on the Non-Navigational Uses of Watercourses. These new regimes must provide sharing regimes, including water markets, that permit adjustment to changed conditions. They also must provide for the maintenance of base river flows to guarantee the provision of ecosystem services in the face of the possible stresses of global climate change.88

THE ANTARCTIC ICE SHEET: RISE AND DEMISE?

SHERWOOD WILLING WISE, JR.*

TABLE OF CONTENTS
I. Introduction... 383
II. The Present Day Ice Sheet ... 389
III. Ice-Sheet History.. 390
 A. Late Paleocene Thermal Maximum (~55.5 Ma).......................... 392
 B. Eocene (55-34 Ma)... 394
 C. Eocene/Oligocene Boundary Transition (~33.6 Ma) 394
 D. Oligocene-Early Miocene (34-15 Ma).. 398
 E. Middle Miocene to Pliocene (15-2 Ma)...................................... 399
 F. Quaternary (2.0-0 Ma)... 403
IV. Stability of the West Antarctic Ice Sheet.. 405
V. Conclusions ... 408
VI. Appendix.. 412

I. INTRODUCTION**

Since 1995, the popular press has widely reported major breakouts of shelf ice along the Antarctic Peninsula as a harbinger of the deleterious effects of global warming.1 Sections of the floating Larsen Ice Shelf the size of Rhode Island have detached and floated

* Ph.D. in Geology. Assistant Professor to Full Professor, The Florida State University, 1971-Present; Principal Investigator of the FSU Antarctic Marine Geology Research Facility, 1993-Present. See <http://www.gly.fsu.edu/faculty/wise.html>. This research is supported by U.S. National Science Foundation Grant OPP-9422893 and a JOI-USSAC post-cruise award. I thank especially my Ocean Drilling Program Leg 183 (Kerguelen Plateau) shipmates and the Team Members from the Cape Roberts Project for many stimulating and helpful discussions on this subject. Peter Barrett (Victoria Univ.) and David M. Harwood (Univ. Nebraska) kindly provided important references and figures, and Reed Scherer (Univ. Northern Illinois) made available an important preprint of his work. David Davenport helped modify the figures and the Journal staff provided diligent and in-depth editorial assistance.

**Abbreviations for time in this article will be SI (International System of Units): ky = thousands of years; m.y. = millions of years; Ka = thousands of years before the Present; Ma = millions of years before the Present. Other abbreviations used in this article include: m = meters; ft = feet; ca. = circa; ~ = approximately; ‰ = parts per mil; δ18O = oxygen isotope ratio; Gt/yr = gigatons per year; ODP = Ocean Drilling Program; CRP = Cape Roberts Project; CIROS = Cenozoic Investigations of West Ross Sea; IRD = ice-rafted debris; ANTOSTRAT = Antarctic Offshore Stratigraphy Program; DSDP = Deep Sea Drilling Program; SCAR = Scientific Committee on Antarctic Research.

out to sea in a matter of days.\(^2\) Indeed, since the mid-1940’s the average annual temperature along the Antarctic peninsula has risen ~ 2° C (3-4° F) and in midwinter has risen 4-5° C (7-9° F).\(^3\) This phenomenon has been accompanied by major dislocations of marine fauna which are sensitive to changes in temperature and ice conditions. For example, colonies of southern elephant seals and fur seals as well as gentoo and chinstrap penguins are moving south from the latitudes of the Falkland Islands to the vicinity of the U.S. scientific base at Palmer Station (Fig. 1).\(^4\) On the other hand, the dominant Adélie penguins which reside there and feed on krill, are perishing.\(^5\) On land, the normal low grasses, tiny shrubs and mosses of the tundra are thickening rapidly, glaciers are retreating, and major ice shelves are thinning.\(^6\)

Although the annual temperatures farther south over the continent are not rising significantly, scientists are nonetheless concerned because Antarctica is considered to be the primary engine that drives ocean and atmospheric circulation in the Southern Hemisphere.\(^7\) Any change in the condition or volume of its ice sheet could have profound effects not only on climate but on sea level as well. In a worst case scenario, if all of the water stored in the ice caps of the world were to melt, it would raise eustatic sea level 72 m (236 feet).\(^8\)

\(^2\) See Helmut Rott et al., *Rapid Collapse of Northern Larsen Ice Shelf, Antarctica*, 271 SCIENCE 788, 788-89 (1996). Other breakouts of shelf ice further south have also been reported within the last five years, including along the Ronne-Filchner Ice Shelf (see The Antarctic Meteorological Research Center Photo Gallery [visited July 7, 2000] <http://uwamrc.ssec.wisc.edu/amrc/amrcgallery.html>) and the Ross Ice Shelf. In March 2000, the Ross Ice Shelf produced an elongate iceberg that measured 183 miles by 22 miles, about twice the size of the State of Delaware. The iceberg is believed to be “among the largest ever observed” and it will take approximately a century to replace. See *Huge Chunk of Ice Breaks Off From Antarctica Ice Sheet*, TALL. DEM., Mar. 24, 2000, at 4B (available from AP Wire Archives, Mar. 23, 2000 [visited Aug. 10, 2000] <http://llwire.ap.org>; see also Iceberg Images at Antarctic Meteorological Research Center (visited July 7, 2000) <http://uwamrc.ssec.wisc.edu/amrc/iceberg.html>.

\(^4\) See id.

\(^5\) See id. Krill are shrimp-like swimming organisms that must shelter under solid sea during their first month.

\(^6\) See e.g., J. R. Potter & J. G. Paren, *Interaction Between Ice Shelf and Ocean in George VI Sound, Antarctica*, 43 ARCTIC ANTHROPOLOGY SERIES 35, 35-36 (1985). The base of the largest ice shelf in the western Antarctic Peninsula region, the George VI Ice Shelf, is melting at an average rate of 2 m/yr and is retreating at 1 km/yr. The Wordie Ice Shelf was historically a source of ice flowing into Marguerite Bay but has disappeared within the last two decades. See generally C. M. Doake & D. G. Vaughan, *Rapid Disintegration of the Wordie Ice Shelf in Response to Atmospheric Warming*, 350 NATURE 328, 328-29 (1991).

This rise would be enough to flood San Francisco’s Golden Gate Bridge. Lesser melt downs would be disastrous for most coastal cities and island nations of the world, not to mention the southern halves of the states of Florida and Louisiana.

The culprit, in the eyes of many, is global warming, perhaps induced by man’s activities including the anthropogenic release of “greenhouse” gases. These gases raise temperatures by trapping within the atmosphere long-wave (heat) radiation emitted by the sun-warmed Earth. Records of the steady increase in these atmospheric gases have been kept only for the past three decades at the Mauna Loa Observatory in Hawaii. Over the past two centuries, however, sharp increases in carbon dioxide of 30% and methane of 145% have been detected in gas bubbles trapped in cores from the Greenland Ice Sheet. These values have never been experienced in the last 420,000 years for which ice-core records from ice sheets exist. When combined, these curves paint a startling picture for the years after the beginning of the Industrial Revolution (Fig. 2) and peak at present day. In North America, the winters from 1997 to 2000 have been the warmest since the government began record keeping 105 years ago. This is apparently an El Nino-induced phenomenon, although continued record temperatures and droughts around the world during the summer of 2000 led noted climatologist James Hansen of the Goddard Institute to observe “in

9. See Golden Gate Bridge, WORLD BOOK ENCYCLOPEDIA 255 (2000) (stating that the floor of the bridge is 67 m (220 ft) above sea level).
10. See Nicholas D. Kristof, For Pacific Islanders, Global Warming is No Idle Threat, TALL. DEM., Mar. 2, 1997, at 16A (pointing out that “Kiribati, the Marshall Islands, and Tuvalu in the Pacific Ocean and the Maldives in the Indian Ocean” are mostly coral atolls only a few feet above sea level. In addition to inundating these nations, “a 1 m (3.3 ft) rise in sea level would force the evacuation of [some] 70 million Chinese and 32 million Bangladeshis. One-fifth of Bangladesh would disappear”).
12. “Greenhouse” gases include carbon dioxide [CO₂], methane [CH₄], nitrogen oxide [N₂O], and the man-made chlorofluorocarbons [CFCs].
15. See G. Orombelli, Climate Record from Ice Cores, 3 TERRA ANTARCTICA REPORTS 3, 9 (1999) (citing J. R. Petit et al., Climate and Atmospheric History of the Past 420,000 Years from the Vostok Ice Core, Antarctica, 399 NATURE 429 (1999); see Fig. 1 for the location of the Vostok core).
16. See id.
my opinion, we can say that global warming is contributing to the increased frequency of extreme events." 18

Temperature increases are also being noted in the oceans where the average heat content to ~275 m (900 ft) has increased 0.56% from 1948 to 1996. Waters as deep as ~3050 m (10,000 ft) have gained an average of 0.06° C (0.11° F). 19 The United Nations-sponsored Intergovernmental Panel on Climate Change (IPCC) has stated that “the balance of evidence suggests that there is a discernible human influence on global” warming. 20 It further declared that a doubling of greenhouse gases could raise average global temperatures by approximately 1° to 3.5° C (2° to 6° F) over the next century. 21 This in turn would raise average sea level approximately 15 to 94 cm (6 to 37 in) by melting of polar glacial ice. 22

Nevertheless, the extent that man’s activities are influencing global climate is a matter of strong debate. Some believe that the underlying strength and magnitude of Earth’s natural climate cycles are far greater than man’s ability to alter them. They believe, therefore, the warming over the past century and a half since the end of the “Little Ice Age” 23 may have little to do with human activities. The Ad Hoc Committee on Global Climate Issues of the American Association of Petroleum Geologists states frankly that “there is no discernible human influence on global climate at this time.” 24

18. Shanon Begley, If you can’t take the heat…, NEWSWEEK, Aug. 7, 2000 at 64.
19. See H. Josef Hebert, Researchers Find Even Deepest of Oceans Warning, TALL. DEM., Mar. 24, 2000, at 1B.
21 See id. at 6.
23 The “Little Ice Age” was a global cooling episode between about 1400 and 1850 AD during which mountain glaciers all over the world advanced well beyond their present limits. See J. MURRAY MITCHELL, JR., ENERGY AND CLIMATE 53 (1977); see also H. H. Lamb, Climatic Fluctuations, 2 WORLD SURVEY OF CLIMATOLOGY 173, 177-178 (1969). See generally George H. Denton & Wibjorn Karlén, Holocene Climatic Variations-Their Pattern and Possible Cause, 3 QUATERNARY RESEARCH 155, 201 (1973) (pointing out that the Little Ice Age was the last of five such Holocene events which seem to be part of a smaller scale cycle superimposed on larger-scale climate trends).
24 See Lee C. Gerhard & Bernold M. "Bruno" Hanson, Ad Hoc Committee on Global Climate Issues: Annual Report, 84 AAPG BULL. 466, 466 (2000). This report has resulted in a policy statement on climate change approved by the AAPG Executive Committee on behalf of the U.S. members of the association which argues that "[D]etailed examination of current climate data strongly suggests that current observations do not correlate with the assumptions or supportable projections of human-induced greenhouse effects." Climate change 20 AAPG EXPLORER at 6, at 8 (1999). But see R.C.L. (Chris) Wilson, Wait on Proof (in “Readers’ Forum”), 21 AAPG EXPLORER 82, 82-83 (2000); Andrew H. Warrington, Tactical Move?, id. at 83 (both letter writers are international members of the AAPG pointing out omissions and deficiencies in the
Undeterred, the IPCC has issued a draft of their next five-year report (due out this year) stating unequivocally with even more confidence “that there has been a discernible human influence on global climate.” They base their opinion in part on the magnitude and abruptness of the 20th-century warming when scaled against temperature data for the past millennium recorded in tree rings, other sources, and the more recent instrumental record (Fig. 3).

Given the concern over anthropogenic climate effect, it is ironic that just twenty-five years ago leading geoscientists and climatologists were predicting that the Northern Hemisphere was not only poised to enter another glacial cycle, but that the cooling trend from the 1940s to the mid-1960s might even be leading up to that event. Their prediction was based primarily on the fact that we are living in an interglacial period that is thought to be nearing its end. For the past ca. 700,000 years, glacial-interglacial cycles have been paced by variations in the earth’s orbital parameters. Combined, these render a ~100,000 year period in which the interglacials span about 1/10 of each cycle, or about 10,000 years. Our present-day interglacial interval (formally called the Holocene Epoch) has already endured almost that long. Assuming that “nature [is] left to her own devices with [no] interference from man”, predictions by paleoclimatologists

26. See MITCHELL, supra note 23, at 55; see also J. Murray Mitchell, Jr., Carbon Dioxide and Future Climate, ENVIRONMENTAL DATA SERVICE, March 1977, at 3, 4 (stating that global climate had been cooling since 1940, and that if continued, many places would reach ice-age levels only 700 years from now); [Weather Experts Believe Ice Age Is On Way, TALL. DEM., June 4, 1975, at 12A.]

27. See MITCHELL, supra note 23, at 53; Mitchell, supra note 26, at 4.

28. These orbital variations are frequently referred to as Milankovitch cycles and are detected by time-series analysis of variations in the sedimentary record (such as the spacing of laminations [varves], contrasting rock types, or changes in geochemical or magnetic properties). For an excellent historical summary and explanation of Milankovitch theory written in layman’s language, see generally JOHN IMBRIE & KATHERINE PALMER IMBRIE, ICE AGES, SOLVING THE MYSTERY (1998).

29. See generally MITCHELL, supra note 23, at 53.
as to the onset of the next glacial cycle vary, but could exist within the range of a few thousand years.30

Interestingly, marine sediment records show that climate stability on millennial time scales during interglacials is generally high. This is true for the relatively mild interglacial in which now we live.31 Hence, despite relatively minor variations such as the Little Ice Age, human civilization has developed within a period of remarkably stable climatic conditions. On the other hand, both the marine sediment and continental ice-core records show that over the past 110,000 years some changes in climate have been large, abrupt, and global.32 Even as recently as 8,000 years ago, a brief intense cold event occurred after temperatures had risen close to current levels.33 These abrupt switches in global climate seem to reflect drastic reorganizations (or even collapses) of the current thermohaline oceanic circulation system. The triggers for these are not well understood, although the Antarctic ice sheet is an important influence on that system. Professor Wallace B. Broecker concludes that:

```
there is surely a possibility that the ongoing buildup of greenhouse gases might trigger yet another of these ocean reorganizations and thereby the associated large atmospheric changes. Should this occur when 11 to 16 billion people occupy our planet [as has been pro-
```

30 See Mitchell, supra note 26, at 4. Cooling could begin as soon as 700 years from now (see Mitchell, supra note 23) with a substantial expansion of Northern Hemisphere ice during the next 5,000 years. See Dr. James D. Hays, Our Changing Climate 84 (1979).

31 Not all interglacial periods are created equal, however. Marine isotope stages have been systematically numbered with even numbers for glacial and odd numbers for interglacial intervals. Marine isotope stage 11, which began at about 400 Ka, was a particularly mild interglacial and produced ice-free conditions in the North Atlantic for about 30-40 ky. See Jerry F. McManus et al., A 0.5-Million-Year Record of Millennial-Scale Climate Variability in the North Atlantic, 283 SCIENCE 971, 973 (1999).

32 See generally Wallace S. Broecker, Thermohaline Circulation, The Achilles Heel of Our Climate System: Will Man-Made CO\textsubscript{2} Upset the Current Balance?, 278 SCIENCE 1582, 1582 (1997) (citing Wallace S. Broecker & George H. Denton, The Role of Ocean-Atmosphere Reorganizations in Glacial Cycles, 53 GEOCHIMICA ET COSMOCHIMICA ACTA 2465 (1989); W. Dansgaard et al., A New Greenland Deep Ice Core, 218 SCIENCE 1273 (1982); W. Dansgaard et al., Evidence for General Instability of Past Climate from a 250-kyr Ice Core Record, 364 NATURE 218 (1993); P.M. Grootes et al., Comparison of Oxygen Isotope Records from the GISP2 and GRIP Greenland Ice Core, 366 NATURE 552 (1993); W. Dansgaard et al., The Abrupt Termination of the Younger Dryas Climate Event, 339 NATURE 552 (1989); K. C. Taylor et al., The 'Flickering Switch' of Late Pleistocene Climate Change, 361 NATURE 432 (1993)).

33 See Broecker, supra note 32, at 1586 (citing Richard B. Alley et al., Holocene Climatic Instability: A Prominent, Widespread Event 8200 Yrs. Ago, 25 GEOLOGY 483 (1997)).
jected for the next century], it could lead to widespread starvation.34

To determine what man’s influence has or has not been on global climate and to make predictions for the future, scientists must first understand both the causes and effects of secular climate cycles. Knowledge of the glacial history of Antarctica is the key to such an understanding, since the Antarctic ice sheet accounts for about 90% of current global ice volume. This paper will review the glacial history and current efforts to decipher it, dwelling on what is known, unknown, and disputed in our knowledge base, as well as implications for the future. This paper will also consider promising lines of attack to extend that knowledge base by further exploration in Antarctica, the most remote and inhospitable environment on Earth.

Part II will serve as a description of the present ice sheet on Antarctica. Part III will provide a brief history of that ice sheet as currently understood based on detailed and exhaustive technical accounts. Part IV will discuss the stability of the ice sheet on West Antarctica and its implications for global warming, and Part V will present the conclusions.

II. THE PRESENT DAY ICE SHEET

The Antarctic Ice Sheet covers some 13.6 million square kilometers or about 98% of the continent35(Fig. 4). Hence, it is most difficult to study its history directly from geological deposits on land. Up to 4,776 m thick, the ice sheet averages over 2 kilometers in thickness and attains a maximum elevation of over 4,000 m.36 It is divided by the Transantarctic Mountains, which project above the ice at many points and separate a relatively stable East Antarctic Ice Sheet that rests mostly on continental crust located above sea level37 from an inherently less stable West Antarctic Ice Sheet. The West Antarctic Ice Sheet is relatively unstable because it is grounded in many places well below sea level in a series of marine basins.38 It

34. Broecker, supra note 32, at 1588.
35. See P. Barrett, Antarctic Climate History Over the Last 100 Million Years, 3 TERRA ANTARCTICA REPORTS 53, 53 (International School of Earth and Planetary Science) (citing David J. Drewry, The Surface of the Antarctic Ice Sheet; ANTARCTICA: GLACIOLOGICAL AND GEOPHYSICAL FOLIO (1983)).
36. See id.
37. See id.
38. See id.; see also J.R. Keys, Ice, 51 ELSEVIER OCEANOGRAPHY SERIES 95, 96 (1990).
also projects north of 65° South into warmer climes along the Antarctic Peninsula (Fig. 4).

The ice sheet moves plastically under its own weight towards the sea where it thins to give rise to floating ice shelves that extend beyond the grounding line. These ice shelves (Fig. 1) are particularly extensive over the inland Ross and Weddell Seas as well as along the eastern margin of the Antarctic Peninsula (the Larsen Ice Shelf). Beyond that, conditions are still sufficiently cold during the winter months to cause sea water around the continent to freeze. This creates an ephemeral sea ice that may extend over 1000 km beyond the continental margin, but which breaks up and melts during the summer months. The freezing seawater, which also undercoats the bottoms of the ice shelves, rejects salt back into the water column to form dense cold brines that sink to the bottom of the ocean. This contributes to the Antarctic Bottom Water, which is a current that moves northward to help drive global ocean circulation.

The conveyer-belt-like movement of the Antarctic Ice Sheet seaward and renewal at its source by precipitation of snow accounts for its relatively young age of just over 400,000 years. Thus, the Antarctic Ice Sheet is a dynamic system, subject to variations in supply and wastage. Were its components to melt, the West Antarctic Ice Sheet would cause sea level to rise 6 m, whereas the East Antarctic Ice Sheet would raise sea level by ten times that amount.

III. ICE SHEET HISTORY

Our direct knowledge of the history of the Antarctic Ice Sheet is skeletal at best because the ice sheet either obscures or erodes away the geological deposits and features needed to decipher that history. For these reasons, geoscientists have come to rely on various “proxy” or indirect records of global climate and Antarctic ice behavior based on their analysis of marine sediments deposited beyond the continent itself. These proxies include: 1) the character of sediments deposited in the Southern Ocean surrounding the continent, including the deposition of ice-rafted debris (i.e., sediment detritus deposited

39. See Keys, supra note 38, at 95.
40. See Leanne K. Armand, An Ocean of Ice — Advances in the Estimation of Past Sea Ice in the Southern Ocean, 10 CSA TODAY, March, 2000, at 5, Fig. 3 (2000).
41. See Stanley S. Jacobs et al., Origin and Evolution of Water Masses Near the Antarctic Continental Margin: Evidence from H\textsubscript{2}18O/H\textsubscript{2}16O Ratios in Seawater, 45 ANTARCTIC RES. SERIES 59, 75-77 (1985).
42. See Barrett, supra note 35, at 53.
by melting ice bergs); 2) changes in sea level; and 3) variations in the oxygen isotope compositions of calcareous microfossil skeletons, particularly those of planktonic and benthic foraminifers43 that accumulate in deep sea sediments of the world’s oceans. Sea-level changes and variations in oxygen isotope ratios44 provide estimates of ice volume (Fig. 5). Oxygen isotope ratios can also be used to help estimate paleotemperatures. The application of these proxies is by necessity based on a number of assumptions and variables,45 not all of which can be well constrained. However, they do provide a reflection of major events in the history of the Antarctic Ice Sheet. Confirmation of these events, though, can be provided best by direct physical evidence in the way of sedimentary deposits left by the ice sheet itself. However, as stated above, direct evidence is difficult to obtain and hence is largely a task for the new century.

North American and European geologists have long recognized a series of Northern Hemisphere continental glacial-interglacial cycles, now dated as beginning about 2.5 Ma (million years before present). These comprise the so-called “ice age” in which we live. The antiquity of Cenozoic46 Antarctic glaciations, however, was not brought home until the scientific drill ship, \textit{Glomar Challenger}, explored the Ross Sea in 1973. Through this effort, ice-rafted debris was recovered and cored dating back to 25 Ma.47 Shortly thereafter a detailed paleotemperature curve revealed an overall global cooling of about 7°C during the Cenozoic.48 This curve was based on oxygen isotope measurements of planktonic and benthic foraminifers in \textit{Glomar Challenger} cores from the Subantarctic region.49

Major steps along the benthic foraminiferal curve (which are similar to that depicted in Fig. 5) were interpreted as thresholds that

43 Planktonic and benthic foraminifers are unicellular ameboid-like protists that live at the surface or bottoms of the oceans, respectively.

44 Oxygen isotope ratios are measured against a standard and expressed through a formula by the term $\delta^{18}O$.

45 For a discussion of these variables vis à vis oxygen isotopes, see Sherwood W. Wise, Jr. et al., \textit{Paleogene Glacial History of Antarctica, in CONTROVERSIES IN MODERN GEOLOGY} 136-137 (1991).

46 The Cenozoic Era comprises the last 65 m.y. of geologic time, beginning with the extinction of the dinosaurs which reigned during the preceding Mesozoic Era. See Figure 5 for the sequence of ‘epochs’ or subdivisions of the Cenozoic time interval (Paleocene, Eocene, etc.).

48 See Nicholas J. Shackleton & James P. Kennett, \textit{Paleotemperature History of the Cenozoic and the Initiation of Antarctic Glaciation: Oxygen and Carbon Isotope Analyses in DSDP Sites 277, 279, and 281, 29 INITIAL REP. DEEP SEA DRILLING PROJECT} 743, 751, 754 (1975); \textit{see also Barrett, supra} note 35, at 54, 61.

49 See Shackleton & Kennett, \textit{supra} note 48; \textit{see also} Barrett, \textit{supra} note 35, at 61.
signaled significant events in the formation of Southern or Northern Hemisphere ice. Underlying this overall cooling trend were several factors including the position of Antarctica under the geographic South Pole, and the dispersal of the other southern continents away from Antarctica via plate tectonics (Fig. 6). Antarctica’s position provided a base for the accumulation of a land-based ice cap. The dispersal of the other continents allowed for two things to happen - the opening of deep-water marine passageways (“gateways”) to allow the establishment of the infinite Antarctic Circumpolar Current, and better access of the interior of the continent to sources of moisture for the precipitation of snow. The Antarctic Circumpolar Current thermally isolated the continent from warmer currents of the global ocean circulation. Its establishment occurred when Antarctica’s final connections with Australia and South America were severed during the Eocene and Oligocene.

A. Late Paleocene Thermal Maximum (~55.5 Ma)

The bottom-water temperature peak during the Late Paleocene Thermal Maximum (~11-13°C; Fig. 5) is a logical place to begin our narrative of the Cenozoic history of the Antarctic Ice Sheet. This is mainly because at that point, as most investigators would agree, there was virtually no continental ice sheet in existence. This was a high-water mark, both literally and figuratively, of the “Greenhouse world” that had prevailed since the preceding Mesozoic Era. Evaporation in the tropics produced warm, dense, oxygen-poor salty waters that swept through the oceans to Antarctica and upset the steady-state ecological balance normally enjoyed by the bottom dwelling benthic foraminifers. Their extinction at this point was the greatest for these organisms in the past ninety million years. This upset was especially sudden as deep-sea waters rose ca. 8.7°C in less than 6,000 years to about 18°C at ODP Site 690 on Maud Rise off

51. See id. at 3845; see also Peter F. Barker et al., Weddell Sea Palaeoceanography: Preliminary Results of ODP Leg 113, 67 PALAEOGEOGRAPHY, PALAEOCLIMATOLOGY, PALAEOECOLOGY 75-102 (1988).
52. See Flower, supra note 8, at 29 (citing K.G. Miller et al., Tertiary Oxygen Isotope Synthesis, Sea Level History, and Continental Margin Erosion, 2 PALAEOCEANOGRAPHY 1 (1987)).
53. See Flower, supra note 8, at 29 (citing Thomas J. Crowley & G. R. North, PALEOCLIMATOLOGY (1991)).
54. See Flower, supra note 8, at 34.
55. See Flower, supra note 8, at 33 (citing Ellen E. Thomas, Late Cretaceous - Early Eocene Mass Extinction in the Deep-Sea, in GLOBAL CATASTROPHES 481-496 (1990)).
Antarctica (Fig. 1). According to oxygen-isotope records, surface waters also warmed.57

Other such thermal events apparently continued into the early Eocene, while warm-water loving calcareous nannoplankton58 continued to thrive in the surface waters around Antarctica.59 No major boundaries based on temperature changes in surface water masses are evident within the region, which is an indication of relatively equable climates at this time. Where terrestrial sedimentary deposits of this age exist along the Antarctic Peninsula, it appears the land was well vegetated by southern temperate or more warmth-loving flora consisting of angiosperms (particularly the southern beech, Nothofagus), southern conifers, and ferns.60 Parts of East Antarctica were apparently rather warm with seasonal rainfall which allowed winds to blow dust out to sea.61

A number of hypotheses have been advanced to account for the Late Paleocene Thermal Maximum. Major changes in the mode of ocean circulation must have occurred.62 These changes were caused by a catastrophic emission of greenhouse gases connected with increases of volcanism63 and the climate feedbacks associated with such releases.64 This suggests the Late Paleocene Thermal Maximum

56. See Flower, supra note 8, at 33 (citing James P. Kennett & Lowell D. Stott, Abrupt Deep-Sea Warming, Paleoenvironographic Changes and Benthic Extinctions at the End of the Palaeocene, 353 Nature 225 (1991)). The paleo-water depth at this site was ~2,100 m. See Kennett & Stott, supra at 225.

57. See Flower, supra note 8, at 34.

58. Nannoplankton are golden-brown algae that produce calcareous nannofossils, the basic constituents of chalk.

60. See J.E. Francis, Evidence from Fossil Plants for Antarctic Palaeoclimates Over the Past 100 Million Years, 3 TERRA ANTARCTICA REPORTS 43, 48 (1999) (citing R.A. Askin, Late Cretaceous-Early Tertiary Antarctic Outcrop Evidence for Past Vegetation and Climates, 56 ANTARCTIC RES. SERIES 61 (1992); H.M. Li, Early Tertiary Palaeoclimate of King George Island, Antarctica — Evidence from the Fossil Hill Flora, in RECENT PROGRESS IN ANTARCTIC EARTH SCIENCE 371 (1992)).

62. See Flower, supra note 8, at 34 (citing Kennett & Stott, supra note 56; James P. Kennett & Lowell D. Stott, Proteus and Proto-Oceans: Ancestral Paleogene Oceans as Revealed from Antarctic Stable Isotopic Results, ODP Leg 113, 113 PROC. OCEAN DRILLING PROGRAM, SCI. RESULTS 865 (1990)).

63. See Flower, supra note 8, at 34 (citing David Rea et al., Global Change at the Paleocene/Eocene Boundary: Climate and Evolutionary Consequences of Tectonic Events, 79 PALAEOGEOGRAPHY, PALEOClimATOLOGY, PALAEODECOLOGY 117 (1990); Timothy J. Bralower et al., High-Resolution Records of the Late Paleocene Thermal Maximum and Circum-Caribbean Volcanism: Is There a Causal Link?, 25 GEOLOGY 963 (1997)).

64. See Flower, supra note 8, at 34 (citing G. R. Dickens et al., Dissociation of Oceanic Methane Hydrate as a Cause of the Carbon Isotope Excursion at the End of the Paleocene, 10
may have witnessed a natural global experiment with an outcome similar in many respects to some of the worst-case scenarios now being postulated for man’s new millennium.

B. Eocene (55-34 Ma)

As noted in Figure 5, the Eocene epoch witnessed a progressive decline in sea-bottom oxygen-isotopic paleotemperatures from the high-water mark of the Late Paleocene Thermal Maximum. The early Eocene was nearly as warm as the latest Paleocene. However, around the beginning of the middle Eocene (at approximately 49 Ma) a consistent increase of δ¹⁸O is noted. This equates to a decrease in inferred paleotemperatures. Some investigators believe the first Cenozoic ice sheets appeared on Antarctica at this time. Although sedimentologic evidence has been cited in a number of instances to suggest that ice rafting and/or deposition by glaciers punctuated the gradual decline in paleotemperatures during the middle to late Eocene, none of these have been accepted as conclusive evidence of ice deposition because of questions concerning the age dates or origins of the sediments. Antarctica continued to support healthy temperate vegetation during this period although an increase in the predominance of *Nothofagus* in the Antarctic Peninsula (Seymour Island, Fig. 1) indicates “the onset either of cooler or more seasonal climates.”

C. Eocene/Oligocene Boundary Transition (~33.6 Ma)

Far more striking in the deep-sea oxygen isotope record is the ca. 1‰ δ¹⁸O “shift” (i.e., a permanent deflection in the curve) at the

Eocene/Oligocene boundary ("short term" curve, Fig. 5). This is the greatest such change in the entire Cenozoic record. Exactly what this dramatic shift signaled has been the subject of considerable debate and interpretation over the years, as is often found with proxy records no matter how detailed and informative they may be. Clearly delineated in the seminal study of subantarctic foraminifera by Nicholas J. Shackleton and James P. Kennett, this break in the curve was interpreted as the initiation of the psychrosphere and a pivotal event in the evolution of Cenozoic climates. Initially, this δ¹⁸O shift was thought to mark the formation of the first floating sea ice around Antarctica and not the development of an actual ice sheet. Subsequent oxygen-isotope studies, however, suggested a major expansion of the Antarctic Ice Sheet. The argument in favor of a major ice-sheet expansion revolved around the fact that if no ice sheet were present then the paleo-temperature equation for an "ice-free world" would result in deep-water paleotemperatures close to the freezing point of seawater (colder than is found in the deep sea today). This is a circumstance not supported by other geological evidence. If temperatures had been close to freezing, one would expect to see evidence of a polar cryospheric (glacial-ice) regime similar to the present-day southern high latitudes. This was clearly not the case at the Falkland Plateau, the southernmost locality at which high oxygen-isotopic values had been measured in the lower Oligocene, but where the sediments contain none of the ice-rafted debris prevalent in modern-day deposits. The assumption of a significant volume of ice on the continent, corrected for possible variations in salinity, produced more reasonable bottom-water temperatures.

Confirmation of predictions of a major ice sheet on the continent by early Oligocene times came with a flurry of drilling activity that

68. See generally Shackleton & Kennett, supra note 48.
69. The psychrosphere is the modern mode of thermo-haline ocean circulation, which is driven primarily by cold waters generated in the high latitudes. See generally Barrett, supra note 35, at 63 (citing James P. Kennett, The Development of Planktonic Biogeography in the Southern Ocean During the Cenozoic, 3 MARINE MICROPALEONTOLOGY 301 (1978)).
70. But see R. H. Benson et al., Evidence from the Ostracoda of Major Events in the South Atlantic and World-Wide Over the Past 80 Million Years, in SOUTH ATLANTIC PALEOCEANOGRAPHY 325, 333 (K. H. Hsu and M. J. Weissert, eds.) (1985) (arguing that the psychrosphere developed earlier, during the Eocene).
71. See Kennett, supra note 50, at 3853.
72. See generally Flower, supra note 8, at 29 (citing Miller et al., supra note 52).
73. See id.
74. See S. W. Wise et al., Cenozoic Evolution of Polar Water Masses, Southwest Atlantic Ocean, in SOUTH ATLANTIC PALEOCEANOGRAPHY 283, 294-304 (1985); see also Wise et al., supra note 45.
75. See Wise et al., supra note 45.
took place around the continent during the late 1980’s (Fig. 1). This was accomplished by ice-based drilling in the Eastern Ross Sea (the CIROS project) and by the scientific drill ship JOIDES Resolution off East Antarctica in the Weddell Sea (Site 693), Prydz Bay (Sites 739 and 742), and on the outlying Kerguelen Plateau (Sites 738, 744 and 748; Fig. 7). The CIROS-1 hole was cored using a diamond-impregnated drill bit from a drilling rig set on the annual fast winter sea ice.76 This was the first time this procedure had been attempted. Ice-rafted debris detected in lowermost Oligocene rocks was interpreted as coming from mountain outlet glaciers along the Transantarctic Mountains.77 On the opposite side of the continent, drilling over the outlying Kerguelen Plateau also produced unmistakable evidence of ice-rafted debris78 in conjunction with the lower Oligocene benthic-foraminiferal isotopic shift (Fig. 8). The shift at this site registered 1.2-1.3 \(\delta^{18}O \).79 Considering that large drop stones deposited by ice bergs had also been drilled in 33 Ma sediment along the Weddell Sea margin,80 it was concluded that a major ice sheet had reached the margin of the continent at several widely separated points around Antarctica during the early Oligocene.81 Although it may have been as extensive as the present-day ice sheet, it would not have been as cold. Instead, it was probably “temperate” and “wet-based” (i.e., warmer internal temperatures, more prone to rapid expansion and decay) in nature.82 This is similar to the ice sheets of the Northern Hemisphere during the past two and one-half million years.83 Being temperate in nature, it would not have been as stable as the present-day Antarctic Ice Sheet but rather subject to major advances, retreats, and decay. This ice sheet probably would have disappeared completely at some point during the Miocene.84

76 Fast sea ice freezes in against the shoreline and remains attached to land until the summer breakup, thus it can provide an exceptionally stable drilling platform. \textit{See generally John B. Anderson, Antarctic Marine Geology} 19-20 (1999).

79 \textit{See James C. Zachos et al., Isotope and Trace Element Geochemistry of Eocene and Oligocene Foraminifers from Site 748, Kerguelen Plateau}, 120 Proc. Ocean Drilling Program, Sci. Results 839, 841 (table 1), 847 (figure 5) (1992).

80 \textit{See Wise et al., supra note 66, at 1009, 1012 (figure 12)}.

81 \textit{See Wise et al., supra note 45}.

82 \textit{See generally} Barrett, \textit{supra note 77}, at 244; \textit{see also} Keys, \textit{supra note 38}.

83 \textit{See generally} Barrett, \textit{supra note 77}, at 244; \textit{see also} Wise et al., \textit{supra note 66}.

84 \textit{See Elizabeth M. Kemp & Peter J. Barrett, Antarctic Glaciation and Early Tertiary Vegetation}, 258 Nature 507, 508 (1975); Miller et al., \textit{supra note 52}; David M. Harwood et al.,
Varying estimates have been formulated for the sea-bottom temperatures and ice volumes associated with the Oligocene ice sheet. As mentioned previously, these two variables of δ¹⁸O readings are difficult to partition out as they both contribute to the signal provided by the benthic foraminiferal curve. Approximately 0.5 of the increase in isotopic values has been ascribed to ice volume increase (45-m eustatic sea level lowering). “The remaining 0.9 ‰ [was] attributed to deep-sea cooling of 3-4° C, about 30-40% of the total” cooling found in the Cenozoic. Depending on what estimate of bottom-water temperatures and ice compositions are assumed, the ice volume could have been anywhere from half the size to greater than the size of the present-day sheet (Fig. 8). A recent analysis employing an independent method to estimate paleotemperatures at a lower latitude drill site suggested that the ~0.9 ‰ shift recorded there can be attributed almost entirely to the ice-volume effect. This accords well with the absence of significant extinction among the benthic foraminiferal assemblages. At the higher southern latitudes where the isotopic shift was greater, however, there were marked changes in the surface-water phytoplankton populations, which indicate cooling in the vicinity of the Antarctic continent. Significant to the present discussion, the δ¹⁸O increase is thought to have occurred quite rapidly in “less than 350,000 years, with the greatest change [in] the final 40-50 thousand years.”

86. See generally Flower, supra note 8, at 29 (citing Zachos et al. Evolution of Early Cenozoic Marine Temperatures (1994), supra note 85; Miller et al., supra note 52).

87. See Shipboard Scientific Party, Site 522, 73 INITIAL REP. DEEP SEA DRILLING PROGRAM 187, 187 (1984) (stating that Hole 522 was drilled at 26°6.843′ S, 5°7.784′ W in 4456.6 m of water).

89. See generally Ellen Thomas, Middle Eocene-Late Oligocene Bathyal Benthic Foraminifera (Weddell Sea): Faunal Changes and Implications for Ocean Circulation, in EOCENE-OLIGOCENE CLIMATIC AND BIOTIC EVOLUTION 245, 258-61 (Princeton University Press 1992).

91. See Flower, supra note 8, at 34 (citing Zachos et al., High-Resolution (10⁴ years) Deep-Sea Foraminiferal Stable Isotope Records of the Eocene-Oligocene Climate Transition (1996), supra note 85).
D. Oligocene-Early Miocene (34-15 Ma)

As previously mentioned, the early Oligocene isotopic shift is the “largest step in the transition from the ‘greenhouse’ to the ‘icehouse’ world” of the Cenozoic and has been numbered as the “Oi1” or first Oligocene benthic foraminiferal isotopic event (Fig. 5).92 Following a change in the placement of the Eocene/Oligocene boundary and a recalibration of the geological time scale,93 “Oi1” is now dated at 33.6 Ma.94 Thereafter began a general warming trend of about sixteen million years punctuated by a number of intermittent glaciations on Antarctica as noted in ice-based drill cores95 (CIROS-1, CRP; Fig. 1) and the deep-sea isotopic record.96 Detailed studies are beginning to show that the intensity of some of these glaciations at least was modulated by variations in the Earth’s orbital parameters, i.e., Milankovitch cycles.97

By the late Oligocene, alpine (mountain valley) glaciation along the Transantarctic Mountains had given way to full-scale development of several ice sheets in East Antarctica that advanced repeatedly over the CIROS-1 locality. Upper Oligocene glacial deposits at CIROS-1 in the Eastern Ross Sea consist of a “number of thin (10’s of m) till sheets [sediments deposited directly by glaciers] separated by thin mudstones that” represent interglacial intervals.98 One of the latter contained a complete leaf impression of the southern beech, Nothofagus99 along with contemporaneous pollen100 that suggest a

92. See Flower, supra note 8, at 31 (citing Kenneth G. Miller et al., Cenozoic Global Sea Level, Sequences, and the New Jersey Transect: Results from Coastal Plain and Continental Slope Drilling, 36 REVIEWS OF GEOPHYSICS 569 (1998)).

93. See William A. Berggren et al., Towards a Revised Paleogene Geochronology, in EOCENE-OLIGOCENE CLIMATE AND BIOTIC EVOLUTION 29 (1992); see also WILLIAM A. BERGGREN ET AL., A Revised Cenozoic Geochronology and Chronostratigraphy, GEOCHRONOLOGY, TIME SCALES AND GLOBAL STRATIGRAPHIC CORRELATION 129 (1995) (updating the time scale currently in use). For the previous widely used time scale, see generally William A. Berggren et al., Cenozoic Geochronology, 96 GEOLOGICAL SOC’Y AM. BULL. 1047 (1985).

94. See Flower, supra note 8, at 31, 36.

96. See Benjamin P. Flower et al., Milankovitch-Scale Climate Variability Recorded Near the Oligocene/Miocene Boundary, 154 PROC. OCEAN DRILLING PROGRAM, SCI. RESULTS 433 (1997); James C. Zachos et al., Orbitally Paced Climate Oscillations Across the Oligocene/Miocene boundary, 388 NATURE 567 (1997).

97. See generally Flower, supra note 96 see also Imbrie & Imbrie, supra note 28.

98. See Barrett, supra note 35, at 64.

99. See id. (citing R. S. Hill, Fossil Leaf, 245 DSIR BULL. N. Z., 143-144 (1989)).
cool to cold temperate terrestrial climate on the flanks of the adjacent Transantarctic Mountains. The trees may have existed near sea level in refugia between ice fields, as coastal enclaves of vegetation that persisted through repeated phases of glacial advances.

The relative mild climates of the early Miocene were “terminated by a succession of δ^{18}O increases”, the most prominent (Fig. 5) and rapid being the “Mi3” event at ~13.8 Ma. Sea levels dropped about 50 m from about 16 to 12 Ma. An increase of ice-rafted debris in Southern Ocean cores confirms a major expansion and semi-permanent establishment of the East Antarctic Ice Sheet during this time.

E. Middle Miocene to Pliocene (15-2 Ma)

Just how permanent the East Antarctic Ice Sheet has been over the past fifteen million years has become one of the most contentious questions debated today among Antarctic specialists. Early interpretations of the oxygen-isotope record suggested that the West Antarctic Ice Sheet was established by late Miocene times and that the full Antarctic Ice Sheet had essentially been in place since that time, operating in a polar mode (very cold internal temperatures) similar to the present-day ice sheet. However, other early studies of marine Southern Ocean phytoplankton raised the possibility of an
early Pliocene warm interval during which the West Antarctic Ice Sheet may have collapsed.109

This argument was taken one step further with reports by Peter-Noel Webb and David M. Harwood of planktonic diatoms and large clusters of diatoms (up to ~100 microns in diameter) of various ages in pre-Quaternary continental glacial deposits. These glacial deposits comprise the Sirius Group of sediments high up in the Transantarctic Mountains (Fig. 4).110 These authors suggested the deposits were emplaced by relatively warm (“wet-based” and therefore inherently unstable) ice sheets from East Antarctica that overtopped the mountains while moving toward the Ross Sea.111 They believed the marine diatoms had been eroded by ice from sedimentary interior basins on East Antarctica that had been previously flooded by marine waters during major deglaciations of the Antarctic Ice Sheet.112 These events occurred as late as ~2.8 Ma.113 In their view, a true “polar” ice sheet (“dry-based”, cold and stable)114 like that on Antarctica today did not develop until about 2.5 Ma, the time major glaciations began in the Northern Hemisphere. Their concept of a major collapse of much of the Antarctic Ice Sheet during and before the Pliocene is now referred to as the “Dynamicist school of thought.”115

The “Dynamicists” were soon opposed by the “Stabilists” who believed that a true polar ice sheet has existed over the continent continuously for the past fifteen million years.116 They contend that

112. See *id*.
113. This date was given by the youngest diatoms present during the late Pliocene. See generally David M. Harwood, *Late Neogene Climatic Fluctuations in the Southern High Latitudes: Implications of a Warm Pliocene and Deglaciated Antarctic Continent*, 81 S. Afr. J. Sci. 239 (1985); see also Steven M. Bohaty & David M. Harwood, *Southern Ocean Pliocene Paleotemperature Variation from High-Resolution Silicoflagellate Biostratigraphy*, 33 MARINE MICROPALEONTOLOGY 241, 248-67 (1998) (where Pliocene peak warming intervals are identified at ~4.2, ~4.3, ~4.5, and ~3.6 Ma from proxy records of planktonic microfossil abundances on the Kerguelen Plateau (fig. 7)).
115. See Molly F. Miller & Mark C. G. Mabin, *Antarctic Neogene Landscapes—In the Refrigerator or the Deep Freeze?*, 8 GSA TODAY, April 1998, at 1-3.
the marine diatoms found in the Sirius Group were either wind blown onto the exposed outcrops and therefore the Sirius deposits could be much older117 or were deposited with ejecta from an extraterrestrial bolide (meteor) impact occurring in the Southern Ocean about 2.15 Ma.118 This contention is supported by the fact that diatoms may be exceedingly small and are notoriously subject to transport over long distances by wind. For example, non-marine and brackish species from Patagonia, South America, have been recovered in some quantity in ice cores at the South Pole.119 Not well explained by eolian (wind) transport, however, is how marine diatoms, particularly those clumped together in large clusters or those too large to be entrained by wind, wound up within and not just on the surface of eroding outcrops of the Sirius Group.120

The Sirius Group contains a rather diverse set of thick glacial and stratified sediments (including those from fluviglacial, glacial-marine, fiord, and lacustrine [lake] environments), that suggest many advances and retreats of inland ice through gaps in the Transantarctic Mountains.121 A wide variety of well-preserved evidence122 (e.g., twigs, leaves, moss, pollen, seeds, and insects) has been put forth to support warmer climates when these deposits were laid down. For example, the Beadmore Glacier area (Fig. 1) contains finger-sized pieces of mature but stunted \textit{Northofagus} wood that suggest mean annual temperatures of -12°C,123 which is about 20°C warmer than presently in that area.124

The main disputed issue is the age of the Sirius Group. The Stabilists, who cite bolide impacts and wind-blown origins for the diatoms located there, believe it is considerably older than proposed

\begin{itemize}
\item 117 See Miller \& Mabin, supra note 115, at 3 (citing Lloyd H. Burckle \& N. Potter, Jr., Pliocene-Pleistocene Diatoms in Palaeozoic and Mesozoic Sedimentary and Igneous Rocks from Antarctica: A Sirius Problem Solved, 24 GEOLOGY 235, 236-238 (1996); A. P. Stroeven et al., On Marine Microfossil Transport and Pathways in Antarctica During the Late Neogene: Evidence from the Sirius Group at Mount Fleming, 24 GEOLOGY 727, 729-730 (1996)).
\item 118 See generally R. Gersonde et al., Geological Record and Reconstruction of the Late Pliocene Impact of the Eltanin Asteroid in the Southern Ocean, 390 NATURE 357, 357-363 (1997).
\item 119 See David D. Kellogg and Thomas B. Kellogg, Diatoms in South Pole Ice: Implications for Eolian Contamination of Sirius Group Deposits, 24 GEOLOGY 115, 116-118 (1996).
\item 120 See David M. Harwood \& Peter-Noel Webb, Glacial Transport of Diatoms in the Antarctic Sirius Group: Pliocene Refrigerator, 8 GSA TODAY, Apr. 1998, at 1, 4-8 (1998).
\item 121 See Barrett, supra note 35, at 67.
\item 122 See, e.g., Allan C. Ashworth et al., A Weevil from the Heart of Antarctica, 5 QUATERNARY PROCEEDINGS 15 (1997).
\item 123 See Barrett, supra note 35, at 67 (citing Francis, supra note 60).
\item 124 See id.
\end{itemize}
by the Dynamicists.125 The Stabilists also point to glacial, geomorphic, and paleoclimate data from the McMurdo Dry Valley region to suggest that cold polar desert conditions have prevailed there for many millions of years, at least since the middle Miocene. This would rule out a dynamic ice sheet and episodes of more temperate climate during that period.126 The Stabilists point to unconsolidated, unweathered, and uneroded ash beds within the Dry Valleys as old as 4 to 15 Ma. The pristine condition of the ash beds seems to rule out chemical weathering in warmer, moister conditions that would have prevailed during interglacial climates.127 In addition, space-age technology (cosmogenic exposure-age analyses) used to date rocks at the surface suggests exposure times of greater than four million years.128 These arguments are formidable, and are held by some129 to represent the majority view of the investigators who have examined the question.

A recent review summarizes well the issues under debate and introduces articles by proponents for both sides of the diatom-transport issues.130 The matter is not yet settled, however, and proxy evidence from the world’s oceans and ice-sheet modeling studies are cited as support for both points of view.131 Evidence for early Pliocene warmth and/or sea level rise is documented from outcrops

125 See, e.g., Arjen P. Stroeven et al., \textit{Atmospheric Transport of Diatoms in the Antarctic Sirius Group: Pliocene Deep Freeze}, 8 GSA TODAY, Apr. 1998, at 1, 4-5; see also Barrett, supra note 35.

126 See Denton et al., supra note 116, at 397-398; George H. Denton et al., \textit{East Antarctic Ice Sheet Sensitivity to Pliocene Climatic Change from a Dry Valleys Perspective}, 75(A) \textsc{Geografiska Annaler} 155, 165-168 (1993).

127 See generally David R. Marchant et al., \textit{Late Cenozoic Antarctic Paleoclimate Reconstructed from Volcanic Ashes in the Dry Valleys Region of Southern Victoria Land}, 108 GSA Bull. 181, 188 (suggesting that mean annual temperatures have been no more than 3\degree C above present at any time during the Pliocene); David R. Marchant et al., \textit{Pliocene Paleoclimate and East Antarctic Ice Sheet History from Surficial Ash Deposits}, 260 \textsc{Science} 667, 668-669 (1993); David R. Marchant et al., \textit{Miocene Glacial Stratigraphy and Landscape Evolution of the Western Asgard Range, Antarctica}, 75(A) \textsc{Geografiska Annaler} 303, 322-330 (1993); David R. Marchant et al., \textit{Miocene-Pliocene Pleistocene Glacial History of Arena Valley, Quatermain Mountains, Antarctica}, 75(A) \textsc{Geografiska Annaler} 269, 295-302 (1993); David R. Marchant & George H. Denton, \textit{Miocene and Pliocene Paleoclimate of the Dry Valleys Region, Southern Victoria Land: A Geomorphological Approach}, 27 \textsc{Marine Micropaleontology} 253, 267-269 (1996).

128 See Susan Ivy-Ochs et al., \textit{Minimum 10Be Exposure Ages of Early Pliocene for the Table Mountain Plateau and the Sirius Group at Mount Fleming, Dry Valleys, Antarctica}, 23 \textsc{Geology} 1007, 1008 (1995); Mark D. Kurz & Robert P. Ackert, \textit{Stability of the East Antarctic Ice Sheet? New Chronological Evidence from Bennett Platform, Antarctica}, 78 \textsc{EOS (Transactions, Amer. Geophysical Union)} S185 (1997).

129 See Barrett, supra note 35, at 65.

130 Miller & Mabin, supra note 115.

131 See id. at 2 (noting that among other evidence the same modeling study is cited as support by both sides, namely that of Philippe Huybrechts, \textit{Glaciological Modelling of the Late Cenozoic East Antarctic Ice Sheet: Stability or Dynamism?}, 75(A) \textsc{Geografiska Annaler} 221 (1993)).
on Antarctica132 and within the marine record elsewhere,133 but a question remains as to whether the magnitude of such events was sufficient to account for a major meltdown of the Antarctic Ice Sheet. It has also been argued that the oxygen isotopic record does not record a major warming during the early Pliocene and that no change in ice-sheet volume has been recorded by the distribution of ice-rafted debris.134 New ice-volume calculations, however, based on a newly developed and as yet low-resolution Mg-temperature curve, show a strong reduction in ice volume at this time.135 As stated by proponents for the Dynamicist view, “it appears that there were brief intervals during the Pliocene when the refrigerator door was left open.”136

\textbf{F. Quaternary (2.0-0 Ma)}

Regardless of the controversy over the early Pliocene stability of the Antarctic Ice Sheet, one would expect the last two million years of its history to be better understood from marine sediment records and, for the past \textasciitilde 400,000 years, from ice cores. As noted previously, deep-sea records, particularly those that record δ^{18}O paleotemperatures, indicate that the pattern of Quaternary ice-volume change is cyclical, having been modulated by variations in the Earth’s tilt and the ellipticity of its orbit (orbital forcing).137 Between about 900-700 Ka, a 100,000 year cycle corresponding to an eccentricity variation became dominant.138 Northern Hemisphere ice sheets entered the picture at about 2.7 Ma, apparently in response to oceanic circulation changes induced by the closure of the Isthmus of Panama.139 Most of

\begin{thebibliography}{9}
\bibitem{132} See generally Francis, \textit{supra} note 60, at 50 (citing Patrick G. Quilty, \textit{The Pliocene Environment of Antarctica}, 130(2) ROYAL SOC. OF TASMANIA, PAPERS AND PROC. 1, 4 (1996)).
\bibitem{135} See Lear et al., \textit{supra} note 88, at 270 (fig. 1E).
\bibitem{136} See Harwood & Webb, \textit{supra} note 120, at 7.
\bibitem{138} See Flower, \textit{supra} note 8, at 38 (citing A. C. Mix et al., \textit{Benthic Foraminifer Stable Isotope Record from Site 849 (0-5 Ma): Local and Global Climate Changes}, 138 PROC. OCEAN DRILLING PROGRAM, SCI. RESULTS 371, 375-379, 385-387 (1995)).
\bibitem{139} See Jan Backman, \textit{Pliocene Biostratigraphy of DSDP Sites 111 and 116 from the North Atlantic Ocean and the Age of Northern Hemisphere Glaciation}, 32 STOCKHOLM CONTRIBUTIONS IN GEOLOGY 115, 128-32 (1979); see also Lloyd D. Keigwin, Jr., \textit{Pliocene Closing of the Isthmus of
the variation in global ice volume (about 80 to 90% or 120 m of sea-level equivalent) has generally thought to have been dominated by Northern Hemisphere ice sheets.140 During the last glacial maximum at ~20 Ka, sea level was about 120 m lower than that of today.141

The potential role of the relatively unstable West Antarctic Ice Sheet, however, has been cited recently as a wild card in this otherwise stable picture of the Antarctic Ice Sheet. Beneath 1,030 m thick ice at the fast-flowing Ice Stream B142 (drill hole UpB, Fig. 1), some 700 km from the margin of the West Antarctic Ice Sheet, a deformable clay-rich glacial sediment (till) beneath the ice was sampled that yielded extinct diatoms along with isotopic data that showed that the fossils had been deposited in open-marine waters.143 In other words, the ice at this location had disappeared, allowing an incursion of the sea at some time during the past 1.3 million years (possibly as recently as 400,000 years ago), presumably during an exceedingly warm interglacial period.144 A wind-blown source for the diatoms was excluded because the sediments contained significant amounts of the cosmogenic radioactive isotope beryllium-10, which denoted deposition in the open sea.145 According to glaciologists, a 700 km retreat would leave little room for an ice sheet.146 That in turn leaves little doubt that the West Antarctic Ice Sheet collapsed and flooded the world’s coasts at that time, a time perhaps not much warmer than today.147

\begin{footnotesize}
140 This view, however, does not adequately take into account the less well understood contribution of the Antarctic ice sheet.

141 See Richard G. Fairbanks, A 17,000 Glacio-Eustatic Sea Level Record: Influence of Glacial Melting Rates on the Younger Dryas Event and Deep-Ocean Circulation, 342 NATURE 637-642 (1989).

142 Ice streams are routes along which the ice flows very rapidly, at approximately 400 m/yr at this locality, where the sediment surface is about 600 m below sea level. See Reed P. Scherer et al., Pleistocene Collapse of the West Antarctic Ice Sheet, 281 SCIENCE 82, 82 (1998) (citing Richard B. Alley et al., Deformation of Till Beneath Ice Stream B, West Antarctica, 322 NATURE 57, 58 (1986); D. D. Blankenship et al., Seismic Measurements Reveal a Saturated Porous Layer Beneath an Active Antarctic Ice Stream, 322 NATURE 54 (1986); Hermann Engelhardt et al., Physical Conditions at the Base of a Fast Moving Antarctic Ice Stream, 248 SCIENCE 57 (1990)).

143 See Scherer et al., supra note 142, at 84.

144 See id. at 84 (suggesting that the meltdown occurred during marine isotope stage [MIS] 11). See generally Reed Scherer, Quaternary Interglacials and the West Antarctic Ice Sheet (in preparation) (manuscript at 1, 4-5).

145 See generally Scherer et al., supra note 142, at 82, 84.

147 See id.
Other evidence of relatively warm interglacial conditions during the Quaternary has come to light during a recent fast-ice-based drilling project off the Transantarctic Mountains in the eastern Ross Sea. During the austral spring of 1997, the Cape Roberts Project (Fig. 1) cored a meter-thick shell bed dated between 1.15 and 0.86 Ma. This shell bed contained an astounding variety of over sixty species of fossil marine invertebrates as well as calcareous planktonic nannofossils called thoracospherids. The latter prefer relatively warm conditions and do not inhabit these waters today. Diatoms in the shell bed are mostly open-marine species. Essentially absent are the sea-ice inhabiting diatoms that currently pervade the site. From this it is inferred that the environment in McMurdo Sound was much different from today. It has been suggested that this also was a time of West Antarctic Ice Sheet collapse.

IV. STABILITY OF THE WEST ANTARCTIC ICE SHEET

The recent studies previously cited call into question the stability of the West Antarctic Ice Sheet even during the relatively recent Quaternary times. As the world’s only large ice sheet grounded with its margins well below sea level, it is vulnerable to collapse. It has already lost two-thirds of its mass since the Last Glacial Maximum, which occurred some 21,000 years ago. Its recent history has been reviewed by Oppenheimer, who concluded from its somewhat erratic behavior that it will likely disintegrate during the next 500-

151. See id. at 481-82.
152. See Bohaty et al., supra note 148, at 441.
153. See id. at 443.
154. See Scherer et al., supra note 142 (speculating that this apparent meltdown occurred during marine isotope stage (MIS) 12, about 900,000 years ago); see also R. P. Scherer, Quaternary Collapse of the West Antarctic Ice Sheet: MIS 11, Yes, but was it a Unique Event? (visited June 8, 2000) <http://www.agu.org/meetings/waisfm99.html> (search under “Scherer”).
700 years. This will cause sea level rise to accelerate at the beginning of the 22nd Century.

This doomsday scenario was painted by glaciologist Johannes Weertman of Northwestern University twenty-five years ago. He warned that the ice sheet would collapse quickly if the climate warms. Weertman explained that even a slight warming-induced retreat of the ice’s grounding line (where it begins to float off the bottom to form its fringing ice shelves) will move the grounding line into thicker ice. “The thicker the ice, the faster it flows outwards and the faster it thins. The faster it thins, the sooner it floats, moving the grounding line even farther inward and accelerating a retreat” that could destroy the West Antarctic Ice Sheet in a century or two. The effect on our coastal cities would be catastrophic.

Not all investigators agree. Some point out that the confinement of the major ice shelves within enclosed embayments such as the Ross Sea provides a modicum of stability, as does spotty resistance of the ice sheet’s bed, which helps hold them together. One modeling study (Fig. 9) suggests that Antarctic mean annual air temperature would have to increase by 9°C before major decay would take place. A rise of 5°C would even cause ice sheet growth. However, a more recent modeling study suggests that a relatively minor increase in water temperature can offset the effects of increased ice accumulation that results in rapid ice sheet retreat during an early stage of climatic warming.

Another recent study suggests that the Greenland Ice Sheet may be even more vulnerable to collapse than the West Antarctic Ice Sheet.
Oceanic temperatures are influenced by feedback mechanisms, such as ice albedo and wind patterns. The ice albedo feedback, for example, is a positive feedback mechanism where the ice reflects sunlight back into space, thereby cooling the ocean. As the ice melts, less sunlight is reflected, leading to further warming and ice melt.

The study concludes that during the previous interglacial between 110-130 thousand years ago, much of Greenland’s ice melted, whereas the West Antarctic Ice Sheet was little affected. It is of little comfort, however, to know that the Greenland Ice Sheet might melt before the West Antarctic Ice Sheet, particularly if both were to collapse.

Because of the currently high equator-to-pole temperature gradient (the temperature difference between those two extremes), global warming would cause temperatures at both poles to rise much faster than global mean annual temperature. This is where man’s influence may come into play most dramatically. Figure 10 depicts the episodic 7° C decline in global temperatures over the past one hundred million years estimated from the deep-sea oxygen isotope method with notes as to where Antarctic and Northern Hemisphere ice sheets probably first appeared. Superimposed above that and on a much shorter time scale, future temperature rise as a result of anthropogenic emissions of CO₂ and other greenhouse gases is plotted according to two scenarios. The first is a “restricted” mode in which emissions are limited to early 1990’s levels (5 gigatons per year (Gt/yr)). The second is an “unrestricted” mode in which there are no restraints on emissions. If emissions are unrestricted, mean global temperatures are expected to rise around 1-3 °C in the next one hundred years and twice that amount by the end of the following century. Traced back in time, such temperatures were last experienced on the planet 12-14 and 35-40 million years ago, respectively. These were the times of the advent of the first semi-permanent ice sheets on East Antarctica and of the inception of the East Antarctic Ice Sheet itself, according to paleoclimatologists. Once the ice sheets are disposed of, these authors predict that continued greenhouse temperature change over the next few hundred years should result in climate perturbations “comparable to or exceeding any that have been reached in the last 600 million years.”

165. See generally Kurt M. Cuffey & Shawn J. Marshall, Substantial Contribution to Sea-Level Rise During the Last Interglacial from the Greenland Ice Sheet, 404 Nature 591, 591 (2000); see also Callahan, supra note 11.
166. See INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE, supra note 20, at 6.
167. See Barrett, supra note 35, at 54 (citing Thomas J. Crowley & Kwang-Yul Kim, Comparison of Long Term Greenhouse Projections with the Geologic Record, 22 Geophysical Res. Letters 933 (1995)).
168. See id.
169 See id.
V. CONCLUSIONS

Our knowledge of the history of the Antarctic Ice Sheet is limited in that it must rely heavily on proxy indicators of ice volume and temperatures rather than direct evidence from ice sheet deposits. Nevertheless, a sufficiently detailed picture of that history is coming into focus to provide an understanding of the major steps in its growth and evolution of when our planet went into “refrigeration,” culminating in the current “ice ages” of the past two and a half million years. The geologic record over the past fifty-six million years provides clearly defined end points for that spectrum, ranging from the unglaciated “greenhouse” world of the Late Paleocene Thermal Maximum to the present-day “icehouse” world with its now “polar” (-20°C) Antarctic Ice Sheet.

Geoscientists strongly debate the details of this history as well as the causes and effects of volume changes of the Antarctic Ice Sheet. They constantly work to refine their data and expand their databases through the acquisition of new and more detailed records. This often requires the development of new technologies to acquire the necessary geologic sections from the field and to interpret these in the lab. Much work remains to be done, however, to satisfactorily define the historic record of the ice sheet and decipher its natural cycle.

Nevertheless, incomplete as our historical knowledge of the Antarctic Ice Sheet and past global climate cycles is, it does provide a basis for predicting the future under two scenarios:

1) If nature is left to take its course and the rather predictable orbital modulation of climate continues into the future as it has during the late Quaternary, one would expect the climate to move from the current interglacial mode into a glacial one within the next millennium or two.\(^{170}\)

2) If man’s loading of the atmosphere with greenhouse gasses continues unabated, then global temperatures will rise and deglaciation of Antarctica will be inevitable. In other words, man will run in reverse the global experiment\(^ {171}\) that nature has run over the past

\(^{170}\) See Mitchell, supra note 23, at 53, 55, 58.

\(^{171}\) Man’s own release of industrially produced greenhouse gases has been aptly labeled an “inadvertent experiment being performed on the atmosphere by human activities” by V. Ramanathan. See V. Ramanathan, The Greenhouse Theory of Climate Change: A Test by an Inadvertent Global Experiment, 240 SCIENCE 293, 294 (1988).
fifty-five million years. The path that process would take is indicated by backtracking the geologic history of the Antarctic Ice Sheet (e.g., Fig. 10),172 which is best done with the aid of computer modeling.173 Not all conditions would be the same, however, in that the configuration of the continents has changed considerably over those fifty-six million years. Also, plants have evolved new types of vegetative covers such as grasses, and the composition of the atmosphere has not remained constant through time; i.e., a different set of boundary conditions exist now as opposed to then. Many of these factors, however, can be taken into account in the modeling.174

To improve computer models as well as our own understanding, scientists need more direct and detailed evidence of the behavior of the Antarctic Ice Sheet.175 This, however, is a difficult record to obtain due to the logistics of working in this remote and inhospitable region where operational costs are high relative to other parts in the world. New technologies have to be developed to overcome these logistical difficulties. Tantalizing geologic records are known to exist around the margins of the continent where prograding sedimentary sequences deposited during past advances and retreats of the ice sheets have been imaged by seismic stratigraphy.176 This is a powerful technique that utilizes earth-penetrating sound waves to provide an x-ray-like cross section through sedimentary sequences (Fig. 11). Coring these sequences with conventional weight-driven piston and gravity cores has been frustrated by inability to penetrate over-consolidated sediments compacted by the more recent ice advances. As a result, pre-Quaternary sediments are seldom retrieved by this means. Drilling these sequences with the scientific drill ship has met with limited success due to the constant heave of the ship and the prevalence of glacial drop stones (“erratics”) that limit core recovery and quality, although more such drilling has been proposed.177 Fast-ice-based diamond coring, such as that used by the recently

172. See Huybrechts, supra note 163; see also Warner & Budd, supra note 164.
174. See id.
175. See Peter N. Webb & Alan K. Cooper eds., Antarctic Late Phanerozoic Earth System Science, 16 SCAR ANTARCTIC OFFSHORE STRATIGRAPHY PROJECT REPORT 1, 1 (1999).
177. See generally Peter F. Barker et al., Ice Sheet History from Antarctic Continental Margin Sediments: The ANTOSTRAT Approach, 5 TERRA ANTARCTICA 737, 747, 756 (1998); see also Webb & Cooper, supra note 175, at 1, 3, 8.
completed Cape Roberts Project, has consistently provided high quality cores with an average 95% recovery during that expedition. 178 Fast sea ice, however, is found over only a limited number of basins that contain the right strata needed to answer the outstanding geologic questions. The adaptation of diamond coring techniques for use on ice-strengthened and ice-breaker vessels is still under development, 179 although suitable systems should become available for routine use during the coming decade. 180 Concerted efforts are also planned to purposefully sample sediments and bedrock beneath the existing ice sheets, although such operations face their own technical difficulties that need to be overcome.

In short, polar science is high risk and needs to be planned within a broad, long term framework that takes into account the logistical difficulties of working in these regions. An omnipresent logistical factor that complicates such work is the vagary of the polar weather. During the first year of the Cape Roberts Project, an early season storm forced cessation of drilling after only seven days of coring. The rig was nearly lost as the sea ice was broken up to within a kilometer of the drill site by incoming waves. 181 The project, however, enjoyed excellent ice conditions during its last two years when the sea ice platform was cold and thick. The final 940 m hole, a spectacular engineering feat in itself, was terminated only because the basal Cenozoic sediments (34 Ma in age) were reached above bedrock over ten times that age. 182 The same heavy sea-ice conditions that favored this type of drilling, however, severely frustrated contemporaneous efforts in Prydz Bay on the other side of the continent (Fig. 1) with the drill ship *JOIDES Resolution*. The ship was unable to reach several of its primary sites, which had been expected to yield

178. See generally Cape Roberts Science Team, *Initial Report on CRP-3, Cape Roberts Project, Antarctica, 7 Terra Antartica* (forthcoming 2000) (manuscript at 201, 203 (Table 7.2)).
182. See Cape Roberts Science Team (2000), *supra* note 95, at 185. This project also benefitted from the use of state-of-the-art core description/processing equipment at the drill site and in a lab at McMundo Station (100 km to the south), such as a microwave acid-digestion unit for preparation of palynology samples (see *supra* note 181 at 22-23).
an older record of the East Antarctic Ice Sheet, possibly a record of its inception.183

Despite the logistical difficulties and setbacks, the future for Antarctic exploration to extend our understanding of ice sheet history is bright, considering international interest and commitment toward acquiring that knowledge.184 All parties of the global change controversy recognize the need for sound baseline studies of nature’s natural glacial cycles before man’s potential role in influencing earth climate can be adequately assessed. The major question is whether we will gain that knowledge in time to make sound predictions for the future of the Antarctic Ice Sheet before the impact of man’s activities is felt in an irreversible way.185 The race is on.

183. See Alan Cooper et al., 188 Proc. Ocean Drilling Program, Initial Rep. (forthcoming 2001) (CD-ROM available from Ocean Drilling Program, Texas A&M Univ., College Station, TX 77845-9547). This ship also lacks the microwave digestion unit (see supra note 182), which severely limited shipboard analysis of pollen and spores, particularly during its most recent cruise to the Kenquplen Plateau (see generally Millard F. Coffin et al., 1983 Proc. Ocean Drilling Program, Initial Rep. (2000) (cd-rom available from Ocean Drilling Program, Texas A & M Univ., College Station, TX 77845-9547)).

185. Ironically, by that time, one of the primary archives for the study of global warming, the ice sheet itself (and the ice cores that can be taken through it), will be gone.
APPENDIX

Figure 1. Antarctica, with locations of key features and areas mentioned in text. RIS — Ross Ice Shelf, LIS — Larsen Ice Shelf, RFIS — Ronne-Filchner Ice Shelf, MR — Maud Rise, KP — Kerguelen Plateau (Barrett, supra note 35, at fig. 10). UpB — upper ice stream B drill hole, CRP — Cape Roberts Project.
Figure 2. Increase of carbon dioxide and methane over the last two centuries based on analyses of air bubbles trapped in ice cores; solid lines denote instrument readings from the atmosphere (Orombelli, supra note 15 at fig. 7).
Figure 3. Global mean annual temperatures for the past 100 years based on tree-ring data and, for the past 200 years, ice core data and instrumented readings (Kerr, supra note 25); see also Thomas J. Crowley, Causes of Climate Change Over The Past 1000 Years, 289 Science 270 (2000) (providing a detailed analysis of the data represented by this figure).
Figure 4. The Antarctic ice sheet today, with ice drainage patterns (elevations to the nearest thousand meters) and the main geographic regions of the continent (Barrett, supra note 35, at fig. 1, as adapted from Drewry, supra note 35). The East Antarctic Ice Sheet (60 m sea-level equivalent) is dammed on its west side by the Transantarctic Mountains, which separate it from the relatively less stable West Antarctic Ice Sheet (6 m sea-level equivalent) (Barrett, supra note 35).
Figure 5. Two proxy indicators of ice sheet volume and/or sea bottom temperatures for the past 65 million years (Barrett, supra note 35 at fig. 9): 1) On the left, oxygen isotope rations ($\delta^{18}O$ expressed in parts per thousand [0/00%]) for deep-sea benthic foraminifers from the Atlantic Ocean (Miller et al., supra note 52). The averaged long-term curve shows a steady increase in $\delta^{18}O$ values (= a fall in global temperatures and/or an increase in ice volume) beginning around the early Eocene, whereas the short-term curve denotes major steps such as the Oll and Mi3 events; 2) The curves to the right show variations in global sea levels from an independent method, seismic sequence analysis (Bilal U. Haq et al., Chronology of Fluctuating Sea Level Since the Triassic, 235 SCIENCE 1156, 1159 (1987). This analysis shows a long-term fall in global sea levels since the early Eocene with short-term fluctuations, most of which are attributed to ice volume changes. The time scale is that of Berggren et al. (1985), which was superceded in 1995 (Berggren et al., supra note 93).
Figure 6. Dispersal of the Southern (Gondwana) continents away from Antarctica via plate tectonics (“continental drift”), resulting in its thermal isolation once all connections to Australia and South America were severed by earliest Miocene time and the deep-water circumantarctic current was established. At that point, oceanic currents from the equatorial regions could no longer bring warmth to Antarctica. Stippled areas show shallow shelves and shelf basins (Barrett, supra note 35, at fig. 4, as modified from Kennett, supra note 69).
Figure 7. Paleogeographic reconstruction for the Prydz Bay region (see fig. 1) for the earliest Oligocene showing the advance of an East Antarctic Ice Sheet to sea level and the propagation of ice bergs that delivered ice-rafted debris to sites drilled by the Ocean Drilling Program on the Kergulen Plateau, some 1,000 km away (Wise et al., supra note 45, at fig. 8.18).
Figure 8. Summary of well-documented (solid pattern) and more speculative (unconfirmed; hatched-pattern) reports of middle Cenozoic glaciomarine sediments from Antarctic and Southern Ocean localities plotted against the record of deep-sea isotopic temperatures and global ice-volume (as a percentage of present-day ice-volume) computed from benthic foraminiferal oxygen isotope records. Two estimates of ice volume are given based on temperatures no colder than 1° C (black-shaded) and 1° to 4° C (hatched pattern) respectively; time scale (Berggren et al., supra note 93) (from James C. Zachos et al., *Abrupt Climate Change and Transient Climates During The Paleogene: A Marine Perspective*, 101 J. GEOLOGY 191, 196 (fig. 3) (1993)).
Figure 9. Maps and graph of ice-sheet size and location derived from a computer model for mean-annual sea-level temperatures of 5, 9, 10, 15, 19, and 20° C above present-day values (Huybrechts, supra note 163).
Figure 10. Changes in global temperature over the past 100 million years compared with that expected from future greenhouse warming over the next 2,000 years (Barrett, supra note 35, at fig. 2). The “restricted” scenario for the future assumes that CO₂ emissions to the atmosphere will be held to early 1900’s levels (5 giga-tons per year), whereas the “unrestricted” curve assumes no restraints on emissions. The “unrestricted” (worst-case) scenario returns atmospheric temperatures to that of 12-13 million years ago by the end of this century and to the level last experienced 35-40 million years ago (when the Antarctic Ice Sheet first formed) by the end of 2200 A.D.
Figure 11. Seismic stratigraphic profile with interpretation (below) showing a cross-section of prograding glaciomarine strata on the Antarctic margin deposited during past advances and retreats of the ice sheets (Shipboard Scientific Party, *Leg 178 Summary: Antarctic Glacial History and Sea-Level Change*, 178 PROC. OCEAN DRILLING PROGRAM, INITIAL REP. 1, 44 (fig. F17) (Barker et al., eds.) (1999). This is one example of many such seismic sequences that await scientific exploration by high-quality diamond-coring techniques to be developed during the next decade.